首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The surface morphology of thin polymer blend films of deuterated polystyrene (dPS) and polyparamethylstyrene (PpMS) is investigated with scanning force microscopy (SFM) and optical microscopy. From a statistical analysis of the data the most prominent in-plane length picturing the domain size as a function of the blend film thickness is determined. In ultra-thin films surface patterns directly after preparation are absent, whereas for thicker films a linear dependence is observed. After a relaxation towards equilibrium, resulting from annealing or storage under toluene vapor, the power law observed changes for ultra-thin films and remains unchanged for thicker films. Received: 27 July 2000 Accepted: 30 October 2000  相似文献   

2.
The surface structure of thin polymer blend films of deuterated polystyrene (dPS) and polyparamethylstyrene (PpMS) after annealing above the glass transition temperature was investigated. With scanning force microscopy (SFM) the surface topography originated by a dewetting process is detected. The sample surface is covered with small droplets consisting of several polymer molecules. Utilizing grazing incidence small angle neutron scattering (GISANS) the topographical information as well as the in‐plane composition is probed. For thin confined blend films a substructure of the droplets resulting from an additional phase separation process at different length scales is detected.  相似文献   

3.
Neutron reflectivity is a powerful tool for exploring polymer dynamics above the glass-transition temperature at short diffusion times in layered thin-film systems. Recent studies of membrane-mediated interdiffusion in deuterium-labeled systems have shown that ultrathin membranes can track the position of the interface in binary polymeric diffusion couples and also can discriminate between perdeuterated and hydrogenous polymers of the same molecular weight. This report shows that similar dynamic information can be obtained for binary hydrogenous polystyrene (hPS) diffusion couples separated by an ultrathin (6-nm) isopentylcellulose cinnamate (IPCC) membrane on Si wafers (air//hPS/IPCC/hPS//Si, where “//” represents an interface between obviously different phases and “/” represents a dynamic interface between polymeric species). In particular, the air//hPS/IPCC/hPS//Si system provides the same information as perdeuterium-labeled polystyrene (dPS) diffusion couples separated by the same IPCC membrane (air//dPS/IPCC/dPS//Si). This technique has potential applications for the study of confinement effects on thin-film dynamics and macromolecular transport across membranes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3248–3257, 2004  相似文献   

4.
The effect of chain-end chemistry on surface and interfacial segregation in symmetric blends of polystyrene (hPS)/deuterated polystyrene (dPS) has been investigated by X-ray photoelectron and secondary ion mass spectroscopy in conjunction with neutron reflectivity measurements. Alpha,omega-fluoroalkyl- and alpha,omega-carboxy-terminated polystyrenes (alpha,omega-hPS(Rf)2 and alpha,omega-hPS(COOH)2) were used as end-functionalized polymers; the former possesses chain ends with lower surface energies, and the latter possesses higher surface energies compared with that of the main chain. In the case of an alpha,omega-hPS(Rf)2/dPS blend film, alpha,omega-hPS(Rf)2 was enriched at the surface owing to the surface localization of the Rf groups, although the surface energy of the hPS segments was slightly higher than that of the dPS ones. On the contrary, in the case of an alpha,omega-hPS(COOH)2/dPS blend film, dPS was preferentially segregated at the surface. This may be due to a surface depletion of COOH ends and an apparent molecular weight increase of alpha,omega-hPS(COOH)2 produced by a hydrogen-bonded intermolecular association of COOH ends in addition to the surface energy difference between hPS and dPS segments. Interestingly, both Rf and COOH chain ends were partitioned to the substrate interface for the alpha,omega-hPS(Rf)2/dPS and alpha,omega-hPS(COOH)2/dPS blend films, resulting in the segregation of the hPS component at the substrate interface for both blends. The results presented imply that surface and interfacial segregation in polymer blends could be regulated by incorporating functional groups into the end portions of one component.  相似文献   

5.
We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene–poly(4‐vinyl pyridine), PS–PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different‐sized PS–PVP micelles, single‐layered films with bimodal self‐assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single‐layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS–PVP micelles in the bimodal self‐assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center‐to‐center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

  相似文献   


6.
We investigated the response of symmetric poly(styrene-block-4vinylpyridine) P(S-b-4VP) diblock copolymer micelles to surface fields of variable strength at free surfaces and substrate interfaces when the micelles as spun were subjected to solvent annealing. Free surface interactions were controlled with solvent annealing in solvents of varied selectivity. On exposure to vapors of a solvent strongly selective for PS, the micelles retained their spherical shape but grew into cylindrical micelles or lamellar nanostructures via fusion on exposure to slightly selective or neutral solvent vapors. Giant 2D disks that completely wetted PS-grafted substrates resulted when spherical micelles were exposed to vapors of a highly selective solvent for P4VP. The interfacial interactions were controlled through subjecting them to UV/ozone (UVO) substrates initially coated with an end-grafted layer of short PS chains, with which the grafted PS chains became oxidized, degraded, or totally removed through UVO treatment for a controlled duration. When thin films were annealed in vapors of THF, the structural transition from spherical to cylindrical micelles depended on the interfacial field. On applying selective UVO exposure of optimal duration, we fabricated a substrate with two interfacial chemistries that promoted varied micellar species (spherical and cylindrical micelles) with a sharp boundary developed within thin films through solvent annealing for a controlled duration.  相似文献   

7.
We have performed measurements of thermal diffusion coefficients DT and solvent self-diffusion coefficients Dss in semidilute to concentrated polymer solutions. Solutes of different glass transition temperatures and solvents of different solvent qualities have been used. The investigated systems are in detail: poly(dimethyl-siloxane) in toluene, tristyrene in toluene, polystyrene in toluene, polystyrene in tetrahydrofuran, polystyrene in benzene, and polystyrene in cyclohexane. The thermal diffusion data are compared to our data and literature data for solvent self-diffusion coefficients. In all systems the concentration dependence of DT closely parallels the one of Dss which may be viewed as a local probe for friction on a length scale of the size of one polymer segment. This identifies local friction as the dominating parameter determining the concentration dependence of DT. Solvent quality, in contrast, has no influence on DT.  相似文献   

8.
The properties of polystyrene blends containing deuteriopolystyrene, multiply end-functionalized with C8F17 fluorocarbon groups, are strikingly analogous to those of surfactants in solution. These materials, denoted FxdPSy, where x is the number of fluorocarbon groups and y is the molecular weight of the dPS chain in kg/mol, were blended with unfunctionalized polystyrene, hPS. Nuclear reaction analysis experiments show that FxdPSy polymers adsorb spontaneously to solution and blend surfaces, resulting in a reduction in surface energy inferred from contact angle analysis. Aggregation of functionalized polymers in the bulk was found to be sensitive to FxdPSy structure and closely related to surface properties. At low concentrations, the functionalized polymers are freely dispersed in the hPS matrix, and in this range, the surface excess concentration grows sharply with increasing bulk concentration. At higher concentrations, surface excess concentrations and contact angles reach a plateau, small-angle neutron scattering data indicate small micellar aggregates of six to seven F2dPS10 polymer chains and much larger aggregates of F4dPS10. Whereas F2dPS10 aggregates are miscible with the hPS matrix, F4dPS10 forms a separate phase of multilamellar vesicles. Using neutron reflectometry (NR), we found that the extent of the adsorbed layer was approximately half the lamellar spacing of the multilamellar vesicles. NR data were fitted using an error function profile to describe the concentration profile of the adsorbed layer, and reasonable agreement was found with concentration profiles predicted by the SCFT model. The thermodynamic sticking energy of the fluorocarbon-functionalized polymer chains to the blend surface increases from 5.3kBT for x = 2 to 6.6kBT for x = 4 but appears to be somewhat dependent upon the blend concentration.  相似文献   

9.
The early stages of phase evolution, not available for nanometer polymer blend films spin-cast from solutions of incompatible mixtures, have been examined for films prepared from nanoparticles of deuterated polystyrene/ poly(methyl methacrylate) blends (1:1 mass fraction of dPS/PMMA) with PS-PMMA diblock copolymer additives. The initial phase arrangement, confined to the size of nanoparticles, has provided the homogeneity of the initial film composition. The early stages of structure formation, promoted by annealing and traced with atomic and lateral force microscopy (AFM, LFM) as well as secondary ion mass spectroscopy (SIMS), resulted in bilayers, observed commonly for as-prepared solvent-cast blends. The initiated capillary instability of the upper dPS-rich layer depended on copolymer additives, which enhanced the lateral structures pinning the dewetting process.  相似文献   

10.
Deuterium labeling has been shown previously to affect thermodynamic interactions at polymer surfaces, polymer/polymer heterogeneous interfaces, and in bulk (away from a surface or interface). However, the changes in polymer-polymer interactions due to deuterium labeling have not been thoroughly investigated for highly immiscible systems. It is shown here that deuterium labeling can influence polymer-polymer interactions at heterogeneous interfaces with highly immiscible systems, namely, polystyrene/poly(2-vinylpyridine) (PS/P2VP), polystyrene/poly(4-vinylpyridine) (PS/P4VP), and polystyrene/poly(methyl methacrylate) (PS/PMMA). Using secondary ion mass spectrometry, segregation of deuterium labeled polystyrene (dPS) in a dPS + unlabeled PS (dPS:hPS) blend layer was observed at the dPS:hPS/hP2VP, dPS:hPS/hP4VP, and dPS:hPS/hPMMA heterogeneous interfaces. However, a reference system involving PS on a PS brush shows no segregation of dPS to the interface.  相似文献   

11.
采用模拟退火和Monte Carlo方法研究体相形成柱状相的双嵌段共聚物薄膜在平板受限和溶剂蒸发条件下的自组装,特别关注柱状相形貌的取向.对于平板受限下的薄膜,研究了表面选择性、溶剂选择性和膨胀程度对柱状相取向的影响.对于溶剂蒸发的薄膜,研究了表面选择性和薄膜厚度对柱状相取向的影响,并讨论了柱状相取向的机理.结果表明,薄膜内存在中性溶剂时形成垂直柱形貌的表面选择性范围较小;存在亲长嵌段的溶剂时形成垂直柱形貌的表面选择性范围较大.溶剂蒸发后薄膜生成垂直柱形貌的参数范围较热退火下增大;柱状相取向取决于蒸发过程中体系由球状相演化为柱状相时的薄膜厚度与体相周期的匹配性.  相似文献   

12.
Spectroscopic and morphological studies on a series of rod-coil block copolymers containing terfluorene segments as the rigid blocks and polystyrene as the flexible parts demonstrate an increase in the photoluminescence intensity and the exciton lifetime as well as formation of isolated spheres as thin films upon thermal annealing in air (200 degrees C for 30 min). Moreover, no appearance of the low energy emission band centered at 520 nm was found after the same thermal treatment which permits these copolymers to emit pure blue light.  相似文献   

13.
The surface morphologies of confined, dewetted polymer films were investigated with atomic force microscopy (AFM) and grazing-incidence small-angle neutron scattering (GISANS). On examining homopolymer films of deuterated polystyrene (dPS) both techniques reveal the resulting droplet structure which is described by one most prominent in-plane length. Due to the contrast resulting from deuteration in the case of polymer blend films of dPS and poly(p-methyl styrene) GISANS is able to probe the in-plane composition of the dewetting structure. An additional phase separation process at different length scales gives rise to a sub- and superstructure which is not detectable by AFM. In addition, the influence of the wavelength used in the GISANS experiments on the structures observed is discussed. Received: 13 April 1999 Accepted in revised form: 29 June 1999  相似文献   

14.
The intrinsic viscosity of a polymer in a solvent mixture is related to the excess free energy of the solvents. Intrinsic viscosities at different temperatures are obtained for poly-2-vinylpyridine–chloroform–ethyl alcohol, poly(methyl methacrylate)–chloroform–ethyl alcohol, polystyrene–cyclohexane–benzene, polystyrene–dioxane–chloroform, and polystyrene–cyclohexane–ethanol. Qualitative, but not quantitative, agreement is found between theory and experiment.  相似文献   

15.
Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.  相似文献   

16.
The effect of the initial states (disordered perpendicular cylinder structure vs. parallel cylinder structure) on the crystallization of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) thin films during cyclohexane annealing was investigated. The cylindrical domains perpendicular or parallel to the surface were obtained by controlling the film thickness. During solvent annealing, for the film with the perpendicular cylinders, the ordering degree of cylinders was increased. The enthalpic increase is large enough for the forming of square‐shaped crystals, and subsequently the square‐shaped single crystals surrounded by the ordered hexagonally packed perpendicular cylinders evolved to the dendrite ones. For the film with the parallel cylinders, the parallel cylinders were translated to the perpendicular ones. The increased enthalpy was not large enough for the formation of square‐shaped single crystals. Instead, the dendrite‐like crystals started at the edge of terraces.

  相似文献   


17.
Miscibility and interaction of decyldimethylphosphine oxide (DePO) with ammonium chloride (AC), hexylammonium chloride (HAC), and dodecylammonium chloride (DAC) in adsorbed films and micelles were studied by surface tension measurements. Phase diagrams were drawn for the mixed adsorption, mixed micelle formation, and equilibrium between adsorbed films and micelles. Nonideal mixing of DAC and DePO was characterized by a negative excess Gibbs free energy and positive excess area of adsorption and negative excess Gibbs free energy of micelle formation. It is concluded that the interaction between DAC and DePO in adsorbed films and micelles is larger than those between the same surfactants alone due to two factors: ion-dipole interactions between the head groups of DAC and DePO and alkyl-chain/alkyl-chain interactions.  相似文献   

18.
Lanthanum modified lead titanate thin films have been obtained by the deposition of sol-gel solutions onto platinized (100) silicon substrates. Crystallization of perovskite films was achieved by thermal treatments at 650°C with slow or rapid heatings. Lead oxide excesses were used in the precursor solutions to counterbalance the lead losses produced during the thermal treatment. Rapid heatings and large excesses of lead produce a preferred orientation of the films. These films have more homogeneous and denser microstructures than slow heated films without lead excess.  相似文献   

19.
采用原子力显微镜(AFM)和透射电镜(TEM)研究了聚苯乙烯/聚二甲基硅氧烷嵌段共聚物(PS-b-PDMS)薄膜的相形态.结果表明,当采用甲苯作为溶剂,旋转涂膜的薄膜样品呈现网络状的形态分布在表面,而样品所对应的透射电镜照片中,PDMS相作为球状分布在PS的连续相中.退火温度对共聚物表面形态有一定的影响,当退火温度高于PDMS的玻璃化温度,表面中PDMS相增多.PS-b-PDMS嵌段共聚物的表面形态随着所用溶剂的变化而有所不同,当采用甲苯作为溶剂时,样品的PS相形成凹坑分布在PDMS的相区之中,而采用环己烷作为溶剂时,PS相作为突起分布在PDMS相区之中.另外,基底对共聚物薄膜表面形态的有较大的影响,当采用硅晶片作为基底时,样品中的PDMS相和PS相呈现近似平行于表面的层状结构.  相似文献   

20.
We report the preparation of nanostructured adaptive polymer surfaces by diffusion of an amphihilic block copolymer toward the interface. The surface segregation of a diblock copolymer, polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA), occurred when blended with high molecular weight polystyrene employed as a matrix. On annealing, the polymer surfaces changed both the chemical composition and the hydrophilicity depending on the environment and pH, respectively. By exposure to either water vapor or air, the surface wettability varied between hydrophilic and hydrophobic. In addition, surface enrichment on diblock copolymer by water vapor annealing led to self‐assembly occurring at the interface. Hence, nanostructured domains can be observed by AFM in liquid media. Moreover, the PAA segments placed at the interface respond to pH and can switch from an extended hydrophilic state at basic pH values to a collapsed hydrophobic state in acidic media. Accordingly, the surface morphology changed from swelled micelles to nanometer size holes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2982–2990, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号