首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl+, one of the important molecular ions in environment science, have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry. Through analyses of the effects of the spin-orbit coupling interaction on the electronic structures and spectroscopic properties, the multiconfiguration characteristic of the X2Π ground state and low-lying excited states was established. The spin-orbit coupling splitting energy of the X2Π ground state was calculated to be 1814 cm−1, close to the experimental value 2070 cm−1. The spin-orbit coupling splitting energy of the 2Π(II) exited state was predicted to be 766 cm−1. The transition dipole moments and Frank-Condon factors of the 3/2(III)-X3/2 and 1/2(III)-1/2(I) transitions were estimated, and the radiative lifetimes of the two transitions were briefly discussed. Supported by the National Basic Research Program of China (Grant No. 2006CB601102) and the National Natural Science Foundations of China (Grant Nos. 20490210 and 20503001)  相似文献   

2.
The low-lying electronic states of NiH and NiAt are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. The potential energy curves as well as the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data and should thus be very useful for guiding future experimental measurements. A cross comparison with other nickel monohalides NiX (X = F, Cl, Br, and I) reveals that the change in the spin-orbit splittings when going from lighter to heavier ligands results more from the state interaction than from the relativistic effects of the ligands.  相似文献   

3.
The global potential energy curves for the 14 low-lying doublet and quartet Lambda-S states of InCl+ are calculated at the scalar relativistic MR-CISD+Q (multireference configuration interaction with single and double excitations, and Davidson's correction) level of theory. Spin-orbit coupling is accounted for via the state interaction approach with the full Breit-Pauli Hamiltonian, which leads to 30 Omega states. The computed spectroscopic constants of nine bound Lambda-S states and 17 bound Omega states are in good agreement with the available experimental data. The transition dipole moments and Franck-Condon factors of selected transitions are also calculated, from which the corresponding radiative lifetimes are derived.  相似文献   

4.
The low-lying electronic states of tetracyanoethylene (TCNE) and its radical anion were studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The results obtained yield a full interpretation of the electronic absorption spectra, explain the spectral changes undergone upon reduction, give support to the occurrence of a bound excited state for the anionic species, and provide valuable information for the rationalization of the experimental data obtained with electron transmission spectroscopy.  相似文献   

5.
This account discusses first two computational methods which can be applied to electronic structure calculations of soft-crystals; one is a method composed of the periodic-density functional theory (DFT) for an infinite crystal and the post-Hartree-Fock method for a cluster model, named here cluster-model/periodic-model combined method (abbreviated as CM/PM-Combined method). The other is a quantum mechanics/periodic-molecular mechanics (named QM/Periodic-MM) method, in which a target molecule is calculated by the DFT or the post-Hartree-Fock method and the other moiety is calculated by the MM method under the periodic boundary condition. Then, the performance of these two methods is discussed. The CM/PM-Combined method exhibited good performance for investigating the gas adsorption into MOF and the QM/Periodic-MM succeeded in reproducing geometry of single crystal of platinum(II) complexes. The QM/periodic-MM method has been applied to theoretical studies of the excited state and the emission spectrum in soft-crystals: In a theoretical study of a gold(I) phenyl phenylisocyanide complex, the geometries of a triplet ligand-to-ligand charger transfer (3LLCT) and a triplet metal-metal to ligand charge-transfer (3MMLCT) excited states were optimized in the crystal and the dependences of absorption and emission energies on crystal phase were discussed. In a theoretical study of a platinum(II) dicyano bipyridine complex, the geometries of several delocalized 3MMLCT excited states, emission spectra, and their temperature dependences were investigated in the crystal. In both gold(I) and platinum(II) complexes, the characteristic features of the excited state and the emission spectra were elucidated by the theoretical calculations. Although the CM/PM-Combined method has not been applied to photochemistry issue, brief discussion is presented for its possibility for the application.  相似文献   

6.
The multireference configuration interaction (MRCI) electronic energy calculations with different basis sets have been performed on the ground state (X1Σ) and three low-lying excited states (3Σ, 1Π and 3Π) of HgCd dimer. The obtained potential energy curves (PECs) are fit to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. Spectroscopic constants are calculated using the APEFs. Based on the PECs, the vibrational levels of each state are predicted. Our equilibrium positions of the X1Σ state and 3Π state are in excellent agreement with the experimental reports.  相似文献   

7.
Ab initio calculations on the low-lying electronic states of SiF+ are performed using the internally contracted multireference configuration interaction method with the Davidson correction and entirely uncontracted aug-cc-pV5Z basis set. The effects of spin-orbit coupling are accounted for by the state interaction approach with the full Breit-Pauli Hamiltonian. The entire 23 Omega states generated from the 12 valence Lambda-S states, which correlate with the first dissociation channel are studied for the first time. Good agreement is found between the calculated results and the available experimental data. The spin-orbit coupling effects on the potential energy curves and spectroscopic properties are studied. Various curve crossings are revealed, which could lead to the predissociation of the a3Pi, A1Pi, and (2)3Sigma+ states and the predissociation pathways are analyzed based upon the calculated spin-orbit matrix elements. The calculated ionization potentials of the ground-state SiF to a few states of SiF+ are in good agreement with the available experimental measurements. Moreover, the transition dipole moments of the dipole-allowed transitions and the transition properties for the A3Pi0+ -X1Sigma+ 0+ and B3Pi1-X1Sigma+ 0+ transitions are predicted, including the Franck-Condon factors and the radiative lifetimes.  相似文献   

8.
采用多参考组态相互作用方法和aug-cc-p V5Z基函数组计算了CN+分子11∑+,21∑+,13∑+和13Π电子态的势能曲线。利用MS势能函数拟合得到了相应的解析势能表达式。在此基础上求解CN+分子的核运动薛定谔方程,获得了全部振动和转动能级,并用Dunham系数展开式拟合出了光谱常数,与目前仅有的11∑+,21∑+态的文献报道结果进行了比较。结果可对航天尾气及工业过程光谱方法监控提供参考。  相似文献   

9.
The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.  相似文献   

10.
The potential energy surface crossings for 1,2-dithiete have been investigated using the complete active space self-consistent field(CASSCF) method and simple group theory.Using the full Pauli-Breit spin-orbit coupling(SOC) operator(■) SO) which consists of the one-electron(■) SO1) and two-electron(■) SO2) terms,we estimate the strengths of the SOC(198.37 cm-1 when symmetry is imposed,and 211.35 cm-1 with no symmetry constraints),which plays an essential role in the spin transitions between different spin s...  相似文献   

11.
The potential energy curves of the molecule NaRb have been calculated for the 60 low‐lying electronic states in the Ω‐representation. Using an ab‐initio method the calculation is based on nonempirical pseudo‐potential in the interval 3.0aoR ≤ 44.0ao of the internuclear distance. The spin‐orbit effects have been taken into account through a semiempirical spin‐orbit pseudo‐potential added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The spectroscopic constants have been calculated for 42 states and the components of the spin‐orbit splitting have been identified for the states (1, 2, 5)3Π and (1, 2)3Δ. The comparison of the present results with those available in literature shows a good agreement, whereas the other results, to the best of our knowledge, are given here for the first time. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

12.
An ab initio and Density Functional Theory (DFT) study of the conformational properties of cyclododecane was carried out. The energetically preferred equilibrium structures, their relative stability, and some of the transition state (TS) structures involved in the conformational interconversion pathways were analyzed from RHF/6‐31G(d), B3LYP/6‐31G(d,p) and B3LYP/6311++G(d,p) calculations. Aug‐cc‐pVDZ//B3LYP/6311++G(d,p) single point calculations predict that the multistep conformational interconversion mechanism requires 11.07 kcal/mol, which is in agreement with the available experimental data. These results allow us to form a concise idea about the internal intricacies of the preferred forms of cyclododecane, describing the conformations as well as the conformational interconversion processes in the conformational potential energy hypersurface. Our results indicated that performing an exhaustive analysis of the potential energy curves connecting the most representative conformations is a valid alternate tool to determine the principal conformational interconversion paths for cyclododecane. This methodology represents a satisfactory first approximation for the conformational analysis of medium‐ and large‐size flexible cyclic compounds. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

13.
The potential energy surface (PES) for the CHF2CHO molecule in the excited S1 state is calculated by the CASSCF method. The features of the 1‐ and 2‐D cross‐sections of PES are considered in comparison with those of the relative molecules. The vibrational frequencies are calculated in harmonic approximation and the vibrational energy levels for the inversion motion of the carbonyl fragment CCHaO and for the torsion motion of the CHF2‐top are calculated in anharmonic approximation by the 1‐ and 2‐D variational methods. The calculated data are compared with the experimental ones. The problems of the experimental data interpretation are considered. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
15.
Theoretical investigation of the 18 lowest electronic states of the molecule ScI in the representation 2S+1Λ(±) has been performed via CASSCF and MRCI (single and double excitation with Davidson correction) calculations. To the best of our knowledge these calculated electronic states are the first ones from ab initio methods. Thirteen electronic states between 4,500 cm?1 and 21,000 cm?1 have been studied for the first time and have not yet been observed experimentally. The harmonic frequency ωe, the internuclear distance Re, the electronic transition energy with respect to the ground state Te, and the rotational constant Be have been calculated for the considered electronic states. By using the canonical functions approach the eigenvalues Eυ and the rotational constants Bυ have also been calculated for the six lowest‐lying electronic states. The comparison of these results with the theoretical and the experimental data available in the literature shows a good agreement. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
17.
The electronic structures at the ground and low-lying excited states of permethyloligosilane radical cations, Sin(CH3)2n+2+ (n = 4-7), have been investigated using DFT and ab initio calculations. The calculations showed that positive charge (hole) is delocalized along the Si-Si main chain at the ground and first excited states. On the other hand, the hole is transferred to the methyl side-chain at the second and higher excited states. From these results, it was concluded that hole can move along the Si-Si main chain at thermal conditions. Also, it was predicted that intermolecular hole hopping takes place by photo-irradiation to the permethyloligosilane radical cation. The mechanism of hole transfer was discussed on the basis of the results.  相似文献   

18.
运用完全活性空间多组态CASSCF方法研究了激发态1,2-二硫环丁烯(1,2-Dithiete)势能面交叉机理.自旋.轨道耦合(SOC)常数采用完全Pauli-Breit旋轨耦合算符(包括单电子和双电子项)进行计算,其强度为198.37或211.35cm^-1,对不同自旋态跃迂起着重要作用.研究结果表明:光激发1,3-dithiol-2-one导致形成主要产物trans—dithioglyoxal(Trans-MinS0)和次级产物thiolthioketene.计算与实验观察结果一致.  相似文献   

19.
The recently proposed electron-hole potential (EHP) method for excited states is extended to the multi-configurational case. The variation equation is solved using the quadratic convergence method. The EHP methods are shown to be approximations to the complete singly excited configuration interaction (CSECI) in the variational sense. Extended Brillouin theorems are proved for the EHP methods. The excitation energies and wave functions obtained by one and two configurational EHP methods agree well with those of the CSECI method. The EHP methods have clear advantage in the computer time requirement over the CI method and are especially suited for a calculation of approximate excited states of large molecules. The EHP methods are applicable to excited states which belong to the same irreducible representation as the ground state.  相似文献   

20.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号