首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recast layer and spatter are two inherent defects commonly associated with holes produced with laser drilling. This paper reports a novel hybrid process of laser drilling assisted with jet electrochemical machining (JECM-LD) that aims to minimize such defects and improve the quality of laser-drilled holes. The process based on the application of a jet electrolyte, being aligned coaxially with the focused laser beam, on the workpiece surface during laser drilling. The effect of the jet electrolyte mainly is an electrochemical reaction with materials. The jet electrolyte also cools the workpiece and transports debris during the process. On the basis of a measurement of laser attenuation in electrolyte, an experimental apparatus system is made and JECM-LD experiments have been performed on 0.5-mm-thick 321S20 stainless steel with two lasers at wavelength of 1064 and 532 nm. It is shown that recast layer and spatter have been effectively reduced during the JECM-LD compared with laser drilling in ambient atmosphere conditions.  相似文献   

2.
In the paper, the result on femtosecond laser drilling of alumina ceramic substrate was reported. The effects of various laser parameters such as different focus position, traverse speed, drilling pattern, pausing time, etc. on the drilled hole quality in terms of surface finish, heat affected zone (HAZ), hole circularity, debris, microcracks were studied. The quality of laser-drilled holes on alumina ceramic substrates was evaluated with optical microscope, SEM/EDX, and X-ray μ-CT analysis. The optimum drilling conditions were identified. High-quality laser-drilled holes on alumina ceramic substrates were demonstrated. The developed process has potential application in manufacturing of alumina substrate based electronic devices.  相似文献   

3.
This paper presents an investigation into the dynamics of repetitive pulsed laser drilling of a visually transparent media using a CO2 laser source. This enabled the use of a high-speed imaging system for observing, in real time, the behaviour of the drilling process in the laser drilled cavity of 1.5 mm diameter holes of up to 18.5 mm in depth. The work revealed that the instantaneous drilling velocity within each laser pulse can vary considerably from the average drilling velocity as a result of the non-uniform temporal pulse shape and the oscillation of the melt ejection rate. During beam breakthrough, both upward and downward melt ejections were observed to occur inside the drilled hole for a short period of time, after which the material was ejected through the exit end of the holes. It has been shown in this work that the downward melt flow velocity increases with hole depth for a positively tapered hole (from 0.09 to 1.43 m/s) and decreases with hole depth for a negatively tapered hole geometry (from 0.4 to 0.1 m/s), as a result of the change in the assist gas velocity inside the drilled hole with respect to the hole taper geometry. The mechanisms of forming the positively and negatively tapered holes in the transparent media have been correlated with the hole geometry and melt flow velocity. The work has demonstrated a new method of studying the melt dynamics in laser drilling.  相似文献   

4.
Laser ablation micro-machining tests are conducted on silicon wafer, both in air and under flowing water stream, with the use of 355 nm-X AVIA laser. Effects of laser pulse frequency, power level, scan velocity and focal plane position on the associated laser spatter deposition (in air), irradiated areas (under flowing water film) and taper are investigated. It shows that low frequency, i.e. 30–40 kHz, and high peak power result in smaller spatter and irradiated areas, and the hole taper decreases with increase in pulse frequency. Increase in the laser fluence broadens both the areas and increases the hole taper. Both areas enlarge with the increase of scanning velocity of more than 3 mm s?1. The scan velocity has no effect on hole taper in air environment but inconsistent hole taper is obtained under flowing water stream. Furthermore, moving the focal plane position below the workpiece surface contributes relatively smaller areas of spatter deposition, irradiation and taper in comparison to zero focal plane position. Finally, the differences between laser ablation in air and under water are identified. The reduction in the spatter deposition and irradiated areas around the perimeter of the ablated hole and a smaller taper with the use of laser trepan drilling method in air and under water machining are investigated in this paper.  相似文献   

5.
In this work, the two main factors that influence the repeatability of the laser percussion drilling process are identified. Experimental parametric analysis was carried out to correlate the laser parameters with the repeatability of a laser percussion drilling process. The experiment was conducted using a flash lamp pumped Nd:YAG laser to drill 2 mm thick mild steel sheets. The relationship between the percentage standard deviation (PSD) of entrance hole diameter, hole circularity and the operating parameters is established. Thirty-five holes were drilled and analysed for each set of identical laser parameters. The PSD of entrance hole diameter ranges between 1.47% and 4.78% for an operating window of 3.5–7 kW peak power, and 1–3 ms pulse width. The circularity of the entrance hole (defined as the ratio between the minimum and maximum diameters of the hole) ranges from 0.94 to 0.87, and is found to correlate with repeatability. The work shows that higher peak power, and shorter pulse width gives better hole geometry repeatability. The effect of melt ejection on hole geometry repeatability is also investigated. Melt ejection and spatter formation have been found to contribute to the poor repeatability of the process.  相似文献   

6.
This paper presents the optimal conditions for the ultraviolet laser percussion drilling of alumina materials intended for use in heat sinks. The Taguchi method and grey relational analysis, along with the consideration of multiple quality characteristics, were applied for determining the optimal parameters. The entrance diameter and taper angle of the drilled hole were affected by the material processing parameters, including laser power, pulse duration, focal plane position, and number of pulses. The Taguchi method and grey relational analysis were used for assessing the effects of the operational parameters on multiple performance characteristics. Nine experiments based on an orthogonal array were performed. According to the results, the optimal process parameters were as follows: laser energy density, 3.82 J/cm2; focal plane position, 0.1 mm; number of pulses, 20 shots; and single pulse duration, 3 ms. Analysis of the grey relational grade revealed that the focal plane position was the most dominant parameter.  相似文献   

7.
Precision drilling can improve the microhole quality by yielding a reduced recast layer thickness and no heat-affected zone. We evaluate the quality of the helical drilled holes, e.g., the recast layer, microcracks, and circularity by scanning electron microscopy. We investigate the overlap rate of the laser beam and find its influence on the efficiency of through-hole machining. The microhole entrance, exit, and side walls are smooth, without an accumulation of spattering material and the formation of a recast layer and microcracks. Optimum parameters for drilling through holes on alloy material GH2132 are a thickness of 500 μm, a laser fluence of 3.06 · 10?2 J/mm2, a pulse repetition rate of 100 kHz, and a helical speed of 60 rev/s. The tapering phenomenon can be avoided by using a helical system with a rotating stage, and the hole circularity is fairly good. Picosecond laser helical drilling can be effective for manufacturing microholes with a high quality. The development of high-power picosecond laser would promote picosecond laser drilling with future industrial relevance.  相似文献   

8.
Laser drilling by temporally modulated pulse is a promising technique and has many advantages compared with normal pulse drilling. In this work, the effect of modulated pulse comprising pre-heating front and sharp trail was mainly studied. The function of the former was to pre-melt the radiated material, and the latter was to expel the liquid melt from the molten pool, thus to form a blind hole. While the trail subpulse was kept constant, the difference in the pre-heating subpulse parameter could cause a considerable influence on the hole quality and drilling efficiency. The depth and volume of the molten pool were proportional to the pre-heating energy, and inversely proportional to the pre-heating duration. With pre-heating subpulses of proper parameters, the sharp trail subpulse was very effective in expelling the melt liquid, leaving only a small quantity of melt to re-solidify as the recast layer, which was observably thinner compared with the holes drilled using the normal pulse mode. In the pre-melting process, the directional melt flow and heat conduction were found to be the reasons why the deep melting phenomenon had occurred.  相似文献   

9.
The results of an extensive experimental study of the free running Nd:YAG laser drilling of a multi-layer carbon fibre composite, where adjacent layers have differently orientated fibres, are reported. For holes drilled with the laser operating in fixed-Q mode at 1064 nm, parallel sections of blind holes illustrating discontinuities in the hole size along a given section direction will be shown to occur at the interface between adjacent layers. An explanation for this effect is proposed. Detailed single pulse drilling characteristics will be presented illustrating the exit hole diameter as a function of pulse energy and material thickness. These characteristics illustrate a ‘stable' drilling regime in which the exit hole diameters are least sensitive to changes in pulse energy or material thickness and a less ‘stable' regime in which they are more strongly dependent on these parameters. Drilling characteristics will be given for two different beam qualities, illustrating the greater drilling depth and reduced hole size achievable with an improved beam quality. Finally holes drilled through a 2 mm thick sample of material with multiple pulses are considered. Size distribution curves for entrance and exit holes will be presented. The total energy required (number of pulses × pulse energy) to drill through 2 mm thick material will be reported as a function of pulse energy in stationary air and argon atmospheres and in a partial vacuum, illustrating a threshold energy which is dependent upon the drilling atmosphere. The threshold energies will be discussed with reference to plasma formation and the reactivity of the drilling atmosphere.  相似文献   

10.
This paper reports on etching rates and hole quality for nanosecond laser percussion drilling of 200-μm thick 316L stainless steel performed with micro supersonic gas jets. The assist-gas jets were produced using nozzles of 200, 300 and 500 μm nominal throat diameters. Air and oxygen were used separately for the process gas in the drilling trials and the drilling performance was compared to drilling in ambient conditions. The highest etch rate of 1.2 μm per pulse was obtained in the ambient atmosphere condition, but this was reduced by about 50% with assist-air jets from the 200 μm nozzle. Increasing the jet diameter and/or using oxygen assist gas also decreased the etching rate and increased the hole diameter. The 200 μm nozzle using air-assist jets produced the least amount of recast and gave the best compromise for etching rate. A combination of plasma shielding and different gas dynamic conditions inside the holes and at the surface are correlated to the observations of different drilling rates and hole characteristics.  相似文献   

11.
Machining of microvias in 100?C50???m thick CMZ glass using an excimer laser (248?nm) was investigated. The effect of various laser process parameters: pulse energy, repetition rate, irradiation time were studied to optimise the microvia drilling process and a process window was identified. Through-hole drilling of 100???m diameter (entry hole) microvias was achieved at a fluence (energy density) as low as 2.3?J/cm2 with an irradiation time of 30?C40?s at a repetition rate of 20?Hz, giving a taper angle between 22?C24° relative to the vertical. However, by increasing the fluence to 4.5?J/cm2, this reduced the machining time to 5?C10?s and taper angle to 14°, giving an exit hole diameter of around 45?C50???m. With 50???m thick glass, it was possible to machine through-hole microvias with smaller entry hole diameters down to 40???m. Machined microvias were characterised to investigate debris, recast layer and microcrack formation. Debris and recast layer around the machined features was minimised by using a protective photoresist layer coating on the glass and through appropriate operating parameter selection. Microcracks along the sidewalls of the microvias could not be avoided, but their severity depended on the laser machining parameters used.  相似文献   

12.
In the present research, Nd:YAG laser micro-drilling of gamma-titanium aluminide, a new material which has performed well in laboratory tests as well as in different fields of engineering, is studied. The effect of different process parameters in the optimization of the process is investigated. The aspects considered are the hole circularity at exit and the hole taper of the drilled hole. Lamp current, pulse frequency, air pressure and thickness of the job are selected as independent process variables. The central composite design (CCD) technique based on response surface methodology (RSM) is employed to plan the experiments to achieve optimum responses with a reduced number of experiments.  相似文献   

13.
Laser drilling is a common commercially developed technique for material processing. From the application viewpoint, it is the end product for a laser system, for instance a drilled hole, that matters. Laser pulse profile is the most important parameter controlling the laser hole drilling process. An efficient and practical method is therefore needed to develop a relationship between the pulse parameters and the depth of hole produced in a known material. In the present study, dimensionless groups are developed to optimize laser pulse parameters to give information on workpiece materials. Consequently, an optimal laser pulse for drilling an aluminum workpiece is predicted.  相似文献   

14.
We report a novel technique for laser high-speed drilling and cutting in teflon films. The new laser drilling surpasses the conventional techniques in simplicity, throughput and spatial resolution. The laser cutting and drilling process consists of three simple steps. First, a thin absorbing layer (in this case 300 Å of gold) is deposited on the teflon to allow for laser absorption. Second, the drilling is performed by pulsed-laser irradiation at the rate of one hole per pulse. The irradiation process does not completely open the holes in which debris still remain. Third, the ultrasonic cleaning in water is used to remove the modified and weakly bound material inside the drilled holes, leaving behind 50 m diameter through holes in 25 m thick teflon sheets. The drilling process-window is well mapped. The cutting process is obtained by fast scanning the laser beam at laser powers above a threshold value. This new technique is desirable for packaging because of its drilling speed as high as 60 000 holes per minute, its fast cutting and its low laser equipment cost.  相似文献   

15.
This paper reports on the characterisation and analysis of spatter deposition during laser drilling in Nimonic 263 alloy for various laser processing parameters using a fibre-optic delivered 400 W Nd:YAG laser. The principal findings are a large proportion of the spatter (approx. > 70%) was deposited due to the initial laser pulses (before beam breakthrough) required to drill a through-hole. Short pulse widths, low peak powers and high pulse frequencies generated smaller spatter deposition areas. At high pulse frequencies, the spatter distribution/thickness can be altered as a result of laser-ejected material interaction. Focal plane positions between −0.5 and +1.5 mm produced relatively similar spatter areas of about 14 mm2. As a result of the reduction in the material removed per pulse, a longer focal length of 160 mm generated smaller areas of spatter deposition in comparison to a shorter focal length of 120 mm. In addition, a generic relationship between the spatter area and dentrance/dexit with increasing total laser energy has been established.  相似文献   

16.
Hohlraums of high-Z materials are used as soft X-ray sources to study indirect drive fusion, equation of state of materials etc. Here, we describe a method to develop spherical gold hohlraums of large wall thickness (∼70–80 μm) on which laser entrance and diagnostics holes are drilled using a 10 Hz Nd:YLF laser. Holes of different diameters have been drilled with lenses of different focal lengths. The back wall of the hohlraum is protected from the damage by shutting off the laser at pre-determined hole drilling time.  相似文献   

17.
苏拾  安志勇  梁伟  丛景彬  樊帆 《光子学报》2012,41(5):565-570
为了获得高质量小孔,克服单脉冲激光打孔的不足,设计了一种能够产生多脉冲激光波形的激光器电源.并在1mm厚的薄钢片上得到直径小于1mm的小孔.多脉冲打孔理论分析表明,多脉冲激光打孔不但减少了熔融物和等离子体的产生,而且降低了激光打孔对高能量的要求,获得的小孔质量优于单脉冲激光打孔.另外脉冲宽度和脉冲间距的选择对激光小孔加工质量起决定性作用,在加工高质量孔的时候,应该选用较短的激光脉冲宽度.实验表明,利用三脉冲激光输出波形打孔所获得的小孔质量要优于单脉冲激光打孔效果,有效脉冲平均能量为350mJ,宽度为100μs,脉冲间距为100μs.  相似文献   

18.
Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A?comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel–titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800?nm, pulse duration of 100?fs, repetition rate of 1?kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.  相似文献   

19.
The trend of the ever-continuing miniaturization requires fast and flexible processing tools. Lasers are flexible tools which have proven their reliability in manufacturing of macrofeatures for many years already. However, to process small features the requirements of the laser source, e.g. in regard to the beam profile, are very high. Innovative laser sources which meet these requirements, such as diode-pumped solid-state lasers, and the progress in processing technology, have made microfeature processing commercially viable during recent years. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high-aspect-ratio holes, while yielding small heat-affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in the microelectronics, semiconductor and automotive industries. This kind of high-quality, high-aspect-ratio micromachining requires high peak powers and short pulse durations. PACS 42.55.Xi; 42.62.Cf; 81.40.-z  相似文献   

20.
A Bessel beam is suitable for laser micro-fabrication because it possesses both a micron-sized focal spot and a deep focal depth. As the influence of focusing aberrations is much smaller than that of a convex lens, the generation of a Bessel beam using an axicon is very practical. In the case of laser micro drilling of austenitic stainless steel with a Bessel beam, suitable processing conditions were investigated. The threshold fluence to make a through hole increased with an increase in the sample thickness. For samples with the same thickness, the threshold fluence increased with an increase in the crossing angle. A small crossing angle Bessel beam can drill a deep hole with a small threshold fluence. A through hole with a diameter smaller than 10 μm can be made on a stainless steel sheet 20 μm thick by using a Bessel beam with a large crossing angle. The taper of the hole drilled with the Bessel beam is smaller than that with the focused beam from the convex lens. PACS 52.38.Mf; 42.62.Cf; 42.79.Bh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号