首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration mode of the powder stream in coaxial laser cladding   总被引:1,自引:0,他引:1  
The blown powder laser cladding process has recently been greatly enhanced by the development of a coaxial powder feed system. It provides a new route to generate the metal parts directly from CAD drawings. The performance of the coaxial powder feeder depends on various gas flow streams which significantly affect the distribution mode of the powder stream and the deposition rate in cladding.Two types of optical techniques have been adopted in this study to investigate the powder concentration mode of the coaxial jet streams. The mode of the powder stream is also mathematically modelled and compared to the experimental results of stainless steel powder. The Gaussian distribution mode in the transverse direction of the powder stream was identified by theory and experiment at cold stream conditions.  相似文献   

2.
Thermal processes of a powder particle in coaxial laser cladding   总被引:1,自引:0,他引:1  
This paper presents a numerical analysis of the heating, melting and evaporation processes of a single spherical powder particle when irradiated by a CO2 laser beam in coaxial laser cladding. The power particle has a size ranging from 20 to 200 μm and the intensity of the laser has been varied from 500 to 3000 W. The laser energy, initial powder velocity and size have been shown to have important effects on the temperature profile of the powder stream. It has also been shown that high powder evaporation due to high power laser radiation may induce significant loss in the powder particle mass, to as much as 25% of the initial size at certain conditions in the simulation.  相似文献   

3.
Effects of process variables on laser direct formation of thin wall   总被引:2,自引:0,他引:2  
In this paper, effects of process variables on wall thickness, powder primary efficiency and speed of forming a thin metallic wall in single-pass coaxial laser cladding are investigated, and some resolution models are established and testified experimentally. With some assumptions, each of wall thickness, powder primary efficiency and formation speed can be defined as a function of the process variables. Wall thickness is equal to width of the molten pool created in single-pass laser cladding and determined by laser absorptivity, laser power, initial temperature, scanning speed and thermo-physical properties of clad material. Powder primary efficiency and formation speed are both dependent on an exponential function involving the ratio of melt pool width, which is decided by the process variables, to powder flow diameter. In addition, formation speed is influenced by powder feed rate. In present experiment, a 500 W continual-wave (CW) CO2 laser is used to produce thin-wall samples by single-pass coaxial laser cladding. The experimental results agree well with the calculation values despite some errors.  相似文献   

4.
Direct Laser Fabrication is a promising new manufacturing technology coming from laser cladding process. From a coaxial nozzle, powder is fed through a laser beam on a substrate. The powder melting and solidification processes lead to the fabrication of a part layer by layer. In this work 316L stainless steel powder is used to form laser tracks on a low carbon steel substrate. The layer geometry is an important process characteristic to control the final part of fabrication. This paper presents analytical relationships between the laser tracks geometrical characteristics (width, height, area, penetration depth) and the processing parameters (laser power P, scanning speed V and powder mass flow Qm). Three values of each processing parameters are fixed and so 27 different experiments have been made and analyzed. The validity of these results is discussed studying the correlation coefficient R, the graphical analysis of the residuals and the uncertainty evaluations. Two kinds of models are studied to predict the form and the geometrical characteristics of the single laser tracks cross sections. The first one is an analytical model in which the distribution of the powder in the feed jet is supposed to govern the laser clad geometry. Three distributions are proposed: Gaussian, uniform and polynomial. In the second model the general form of the clad cross section is supposed to be a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored.  相似文献   

5.
Coaxial laser cladding on an inclined substrate   总被引:7,自引:0,他引:7  
This paper describes an experimental and theoretical study of the cladding mode of coaxial laser cladding on an inclined substrate. Based on the image analysis of the powder stream and clad profile measurements in coaxial laser cladding, it was found that irregular clad profiles always formed on an inclined surface and the location of the peak profile shifted away from the clad center. This phenomenon is caused by uneven distributions of powder concentration and laser beam intensity. A modified Gaussian mode for powder stream and laser beam was proposed to estimate the clad profiles on an inclined plane under laser beam irradiation. The effects of the inclined steel substrate on the CO2 laser beam absorption and stainless-steel powder catchment were examined experimentally. The results show that both the laser absorption and the powder catchment on the mild steel decrease with increasing the cladding angle. From the analysis of laser beam mode, the clad width is equivalent to the beam spot size on the inclined substrate. However, the clad height correlates well with the distribution of the powder concentration. The results show that the Gaussian cladding mode could be adopted in various laser cladding applications such as rapid prototyping and butt welding to predict the clad profiles precisely.  相似文献   

6.
应用FLUENT软件的离散相模块建立了激光熔覆中气体 粉末流的二维模型,研究了保护气和输送气流量及送粉量对粉末流浓度场和速度场的分布规律的影响以及对粉末流发散角和焦点的影响。计算结果表明:随着输送气流量的增大,粉末流速度增加,粉末流发散角逐渐减小;送粉量增加,焦点略微下移,焦点处粉末流浓度值增大。在相同的工艺参数下,使用单反相机拍摄粉末流分布,结果表明试验与计算结果基本吻合。  相似文献   

7.
The powder catchment and clad profile of the edge welding were investigated by experimental and numerical approaches in this study. The clad profile on the edges joined by a coaxial powder filler nozzle with a CO2 laser was measured and compared with the powder concentration mode, which was confirmed by powder flow visualization and numerical computations.In the numerical simulation of an impinging jet of gas-powder flow on an edge joint, the powder concentration distributed on a V groove joined by two plates was solved by FLUENT software. Based on the Gaussian mode of the powder distribution in the jet flow, a simplified mode function was proposed to estimate the clad profiles in the edge joint.Cladding experiments were performed for mild steel substrates with thicknesses of 2 and 6 mm under 1 kWCO2 laser irradiation for 304L stainless steel powder. The results show that the concave clad profiles were generated at large incline angles and the powder catchment efficiency might increase with the joint angle and substrate thickness.Based on the analytical results of the cold powder streams impinging on the edge joint, the similarity between the clad profile and the powder concentration in the edge joint is retained only at small incline angles for thin substrates. Due to the heating effects of laser beam spot and the powder re-distribution inside the edge joint, the deviation of the clad profile between the computation and experiment is increased with the incline angle and substrate thickness.  相似文献   

8.
The structure below the coaxial nozzle is critical since the spatial distribution of metal powder particles determines the laser attenuation as well as catchment efficiency. It is difficult to simulate the powder concentration distribution, because the complex phenomena involved in the two-phase turbulence flow. In this paper, the air-powder flow is studied along with powder properties, nozzle geometries and shielding gas setting. A Gaussian model is established to quantitatively predict the powder stream concentration in order to facilitate coaxial nozzle design optimizations. An experimental setup is design to measure the powder concentration for this process. The simulated results are compared with the experimental results. This study shows that the powder concentration mode is influenced significantly by powder properties, nozzle geometries and shielding gas setting.  相似文献   

9.
In this paper, a model of cross-section clad profile on the substrate in coaxial single-pass cladding with a low-power laser was studied. The static model of powder mass concentration distribution at cold-stream conditions was defined as a Gaussian function. In coaxial single-pass cladding with a low-power laser, since the influence of surface tension, gravity and gas flow on the clad bead could be neglected, the cross-section profile of the clad bead deposited by a low-power laser on the substrate was dominated by the powder concentration at each point on the pool and the time when the material was liquid at this point. The height of each point on the cross-section clad profile was defined as a definite integration of a Gaussian function from the moment at which the melt pool was just arriving at the point to the moment at which the point left the melt pool. In the presented experiment, powder of Steel 63 (at 0.63 wt% C) was deposited on a substrate of Steel 20 (at 0.20 wt% C) at the laser power of 135 W. The experimental results testified the model.  相似文献   

10.
An estimation of the heat loss by conduction can be obtained from measurements of the surface temperature and an overall heat balance at the clad laser interaction zone. Through an inverse calculation of the boundary temperature from observed surface temperatures the powder catchment efficiency can be estimated along with the variation in the clad height expected during laser cladding. This method shows a possible way to monitor and control the clad height and profile as required by near net shape manufacturing methods based on laser cladding.  相似文献   

11.
Powder and wire deposition have been used separately in many laser-cladding, rapid prototyping and other additive manufacturing applications. In this paper, a new approach is investigated by simultaneously feeding powder from a coaxial nozzle and wire from an off-axis nozzle into the deposition melt pool. Multilayer parts are built from 316L steel using a 1.5 kW diode laser and different configurations of the powder and wire nozzles are compared in terms of surface roughness, deposition rate, porosity and microstructure. The parts are analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical microscopy techniques. Results show that deposition efficiency increased and surface roughness decreased with the combined process; some porosity was present in samples produced by this method, but it was 20-30% less than in samples produced by powder alone. Wire injection angles into the melt pool in both horizontal and vertical planes were found to be significant for attaining high deposition efficiency and good surface quality. Reasons for the final sample characteristics and differences between the combined process and the separate powder and wire feeding techniques are discussed.  相似文献   

12.
Temperature analysis of the powder streams in coaxial laser cladding   总被引:8,自引:0,他引:8  
The powder stream temperature of a newly developed coaxial laser cladding technique have been calculated and measured in this study. A simplified one-dimensional model of the particle heating problem under laser irradiation was solved with various conditions of laser intensity, particle size and flow velocity. The experimental results have been successfully detected by a pin-hole infrared sensor with the temperature calibration for hot particles. The thermal profiles of the coaxial nozzle give an optimum operation range of the stand-off distance for coaxial laser cladding.  相似文献   

13.
激光熔覆中同轴送粉气体-粉末流数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
应用FLUENT软件的离散相模块建立了激光熔覆中气体 粉末流的二维模型,研究了保护气和输送气流量及送粉量对粉末流浓度场和速度场的分布规律的影响以及对粉末流发散角和焦点的影响。计算结果表明:随着输送气流量的增大,粉末流速度增加,粉末流发散角逐渐减小;送粉量增加,焦点略微下移,焦点处粉末流浓度值增大。在相同的工艺参数下,使用单反相机拍摄粉末流分布,结果表明试验与计算结果基本吻合。  相似文献   

14.
In order to determine a cross-sectional profile of a clad bead in coaxial laser cladding, its formation mechanism is investigated theoretically and experimentally. In laser cladding, every point at the back edge of a melt pool is contributed to a cross-sectional profile of the clad bead to be formed, and points at the same pool edge but on different cross sections are located at different cross-sectional profiles of the clad bead. A cross-sectional profile of a clad bead is composed of points of intersection between the cross section and a series of pool edges. Model of the cross-sectional clad profile in single-pass coaxial laser cladding is developed. A 500 W CO2 laser is used in the experiment. The experimental result agrees well with the calculated cross-sectional clad profile.  相似文献   

15.
Laser cladding with coaxial powder feeding is one of the new processes applied to produce well bonding coating on the component to improve performance of its surface. In the process, the clad material is transported by the carrying gas through the coaxial nozzle, generating gas-powder flow. The powder feeding process in the coaxial laser cladding has important influence on the clad qualities. A 3D numerical model was developed to study the powder stream structure of a coaxial feeding nozzle. The predicted powder stream structure was well agreed with the experimental one. The validated model was used to explore the collision behavior of particles in the coaxial nozzle, as well as powder concentration distribution. It was found that the particle diameter and restitution coefficient greatly affect the velocity vector at outlet of nozzle due to the collisions, as well as the powder stream convergence characteristics below the nozzle. The results indicated a practical approach to optimize the powder stream for the coaxial laser cladding.  相似文献   

16.
激光熔覆层开裂行为的影响因素及控制方法   总被引:11,自引:0,他引:11  
傅戈雁 《光学技术》2000,26(1):84-86,89
激光熔覆层开裂是影响覆层质量最主要的因素,特别是厚覆层。选用5kW 横流CO2 激光器对各种不同材料和零件进行厚覆层激光熔覆,实验、检测和使用的效果说明:激光熔覆层开裂主要与激光系统参数、工艺处理条件、覆层材料、基体状况等四个方面有关。分析了熔覆层的开裂行为,并介绍了几种控制方法。  相似文献   

17.
在TC4合金表面进行了激光熔覆NiCrBSi合金涂层的试验 ,利用SEM和XRD等对熔覆层的微观组织进行了分析 ,测试了熔覆层的显微硬度。结果表明 ,激光工艺参数对熔覆层的组织和硬度有极大的影响 ,随稀释率的增加 ,激光熔覆层中形成了TiB2 和TiC等颗粒增强相 ,熔覆层的硬度明显提高。  相似文献   

18.
Based on the ambi-polar diffusion, a model to simulate the coaxial RF-excited He–Ne laser plasmas is set up, and the microprocesses in laser plasmas are studied. Some parameters such as the spatial distribution of electron density, RF electric field, RF power density and excitation efficiency for upper laser level are calculated and discussed, which are suitable to describe the electrical properties of the discharges. The theoretical results can explain some experimental phenomena and guide the experimental study.  相似文献   

19.
通过X射线衍射、扫描电子显微镜、能谱仪、极化曲线和磨粒磨损实验分析,研究了不同Cr加入量对TiC-VC增强铁基激光熔覆层耐蚀性和耐磨性能的影响。结果表明:熔覆层中物相主要为α-Fe,TiC,VC和TiVC2。随着Cr加入量的增加,伴随有残余奥氏体及Cr3C2的出现,且Cr3C2呈长条状部分聚集、部分单独分布。熔覆层的耐蚀性与耐磨性随Cr加入量的增加呈现先增加后降低的趋势。熔覆粉末中加入适量的Cr元素能显著提高熔覆层的硬度与耐蚀性。当添加质量分数为3.0%的Cr时,熔覆层硬度高达1090HV0.2,且相同磨损条件下熔覆层磨损失重仅约为Q235钢的1/26;当添加质量分数为9.0%的Cr时,所得熔覆层的耐蚀性最好,约为不添加Cr时的3.26倍。  相似文献   

20.
通过X射线衍射、扫描电子显微镜、能谱仪、极化曲线和磨粒磨损实验分析,研究了不同Cr加入量对TiC-VC增强铁基激光熔覆层耐蚀性和耐磨性能的影响。结果表明:熔覆层中物相主要为-Fe,TiC,VC和TiVC2。随着Cr加入量的增加,伴随有残余奥氏体及Cr3C2的出现,且Cr3C2呈长条状部分聚集、部分单独分布。熔覆层的耐蚀性与耐磨性随Cr加入量的增加呈现先增加后降低的趋势。熔覆粉末中加入适量的Cr元素能显著提高熔覆层的硬度与耐蚀性。当添加质量分数为3.0%的Cr时,熔覆层硬度高达1090HV0.2,且相同磨损条件下熔覆层磨损失重仅约为Q235钢的1/26;当添加质量分数为9.0%的Cr时,所得熔覆层的耐蚀性最好,约为不添加Cr时的3.26倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号