首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Progress in laser material processing may require real-time monitoring and process control for consistent quality and productivity. We report a method of in-situ monitoring of laser metal cutting and drilling using cladding power monitoring of an optical fibre beam delivery system—a technique which detects the light reflected or scattered from the workpiece. The light signal carries information about the quality of the process. Experiments involving drilling and cutting of two samples, a thin aluminum foil and a 2-mm thick stainless steel plate, confirmed the effectiveness of this method.  相似文献   

2.
Laser technology has shown fast growth due to its demands in material processing and manufacturing. Laser material processing includes various applications like cutting, welding, drilling, cladding and surface treatment. In laser surface treatment, the material properties at the surface are altered through surface alloying and transformation hardening. In this study, an enthalpy-based computational model is developed for analyzing laser heating and melting of metals. The solution to the problem is obtained by using a finite element method and validated by comparing the results with that given by an analytical solution to a limiting case problem. A solution algorithm and a computational code are developed to estimate the temperature distribution, solid-liquid interface location and shape and size of the molten pool. The computational model is validated by comparing results with a limiting case analytical model. The study is conducted to analyze the heating rate, the heat affected zone, and the shape and size of the molten pool using a Gaussian laser beam.  相似文献   

3.
Laser materials processing is highly affected by the existence of surface plasma. The absorption of surface plasma during drilling alters the power intensity distribution of the incident laser beam across the irradiated spot. The present study is carried out to measure the electron number density and temperature using a Langmuir probe while a mathematical formulation is conducted for the absorption coefficients due to electron-ion, electron-neutral atom collisions, inverse Bremsstrahlung, and photoionization processes. Consequently, a computer program is developed to compute the relevant absorption coefficients as well as the overall absorption coefficient. The laser power intensity distribution before and after the plasma absorption is computed at a plane 2.6 mm above the workpiece surface. It is found that 13% of the reduction occurs in the incident laser output power intensity at this plane in the plasma.  相似文献   

4.
Conventional laser cutting involves the utilization of converging coaxial nozzles to inject the assist gas used to remove the molten material. This processing system prevents the utilization of this technique to cut aluminium alloys for aerospace applications. The inefficient removal of molten material by the assist gas produces cuts with poor quality; very rough cuts, with a large amount of dross, and a large heat affected zone (HAZ) are obtained. An alternative to increase the assist gas performance is the utilization of off-axial supersonic nozzles. Removal of molten material is substantially increased and cuts with high quality are obtained. On the other hand, pulsed laser cutting offers superior results during the processing of high reflectivity materials as aluminium alloys. However, there are no experimental studies which explore the pulsed laser cutting of aluminium alloys by means of a cutting head assisted by an off-axis supersonic nozzle.The present work constitutes a quantitative experimental study to determine the influence of processing parameters on the cutting speed and quality criteria during processing by means of off-axial supersonic nozzles. Cutting experiments were performed in pulsed mode and the results explained under the basis of the molten material removal mechanisms. Performed experiments indicate a reduction in cutting speed as compared to continuous wave (CW) mode processing and the existence of two processing regimes as a function of the pulse frequency. Best results are obtained under the high pulse frequency one (f > 100 Hz) because the superior capabilities of molten material removal of the supersonic jets are completely exploited in this processing regime.  相似文献   

5.
Laser drilling is one of the basic, most frequently performed, material removal processes. The drilling aspect ratio is theoretically limited by the size and the focal depth of the machining laser spot. The aspect ratio can be improved by using dual focus. In this paper we describe a focus of two different frequencies based on the longitudinal chromatic aberration arisen when polychromatic collimated light is incident on a positive lens element. In the experiments, a Ti:Sapphire laser of 800 nm wavelength and 150 fs pulse duration was used as a source. Two tightly focused laser spots few hundred micrometers apart from each other were formed by focusing a combined collimated laser beam which contains the fundamental optic frequency and the second harmonic optic frequency. The focus of dual-frequency beam was used to drill a 3 mm thick PMMA plate. The drilling aspect ratio of a dual-frequency beam was compared to that of a focus of single frequency beam. Experimental results reveal that dual-frequency beam increases the aspect ratio and improves the drilling quality in terms of profile of the produced features.  相似文献   

6.
A lumped parameter mathematical model is developed to relate the cut depth to the laser cutting parameters and material properties. The model takes into account the threshold power of the incident laser beam for the initiation of cutting and modifies an earlier cutting model so that it applies to a wide set of process parameters ranging from low to high laser powers and slow to fast cutting speeds. Plain steel is taken as an example to show the effects of various process parameters such as the laser power, spot size and cutting speed on the cut depth. Special emphasis is given to the effect of laser mode structure on its cutting capability.  相似文献   

7.
After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process is necessary to optimise the drilling efficiency and to control the quality of the holes. A shadowgraphic imaging technique was used for studying the removal of material from the hole and the absorption of the laser beam by this removed material. Images were made at successive times both during and after the laser pulse.In drilling of thin foils, it was shown that the material was ejected mainly after the laser pulse. A comparison of different materials showed that the drilling process should be optimised for each material independently. Furthermore, the plume was found to be not fully transparent for processing materials with a strong absorption line at or near the laser wavelength. The correlation between material and drilling speed suggests improved energy transfer and improved melt ejection for the materials with this absorption. PACS 42.62.Cf; 52.38.Dx; 52.38.Mf  相似文献   

8.
We report a novel technique for laser high-speed drilling and cutting in teflon films. The new laser drilling surpasses the conventional techniques in simplicity, throughput and spatial resolution. The laser cutting and drilling process consists of three simple steps. First, a thin absorbing layer (in this case 300 Å of gold) is deposited on the teflon to allow for laser absorption. Second, the drilling is performed by pulsed-laser irradiation at the rate of one hole per pulse. The irradiation process does not completely open the holes in which debris still remain. Third, the ultrasonic cleaning in water is used to remove the modified and weakly bound material inside the drilled holes, leaving behind 50 m diameter through holes in 25 m thick teflon sheets. The drilling process-window is well mapped. The cutting process is obtained by fast scanning the laser beam at laser powers above a threshold value. This new technique is desirable for packaging because of its drilling speed as high as 60 000 holes per minute, its fast cutting and its low laser equipment cost.  相似文献   

9.
A theoretical approach and qualitative analysis of the changes induced on the surface morphology and the formation of microstructures on silicon targets irradiated by excimer laser are presented. This study is based on theoretical principles of the laser ablation process, in particular, on the analysis of the contribution of the laser energy density, which involves the laser beam parameters and also the physical properties of the target material. For different laser incident angles, the formation of micro-columns oriented towards the laser incident direction is explained. Moreover, numerical simulations and ablation experiments carried out with an excimer laser corroborate the theoretical analysis.  相似文献   

10.
实验研究了样品表面有切向空气气流、切向氮气气流和无气流时,976 nm连续激光对玻璃纤维增强E-51环氧树脂复合材料的辐照效应。结果表明:无气流时,喷出的热分解产物会对入射激光产生屏蔽作用;有气流时,激光对玻璃纤维的破坏方式是其升温熔化后再被切向气流带走;当激光功率密度较低时,切向空气气流以加强样品表面的对流冷却作用为主,不利于激光对玻璃纤维复合材料的破坏;当激光功率密度较高时,切向空气气流以降低屏蔽作用和提供氧气助燃为主,有利于激光对玻璃纤维复合材料的破坏。三种气流状态下,质量损失随功率密度呈现单调增加趋势,当入射激光功率密度在100~600 W/cm2范围内,随着功率密度的增大,激光能量的利用效率逐渐增大并趋于稳定。  相似文献   

11.
Laser produced plasma plays an important role in the laser drilling of sheet metals as it can partially block and absorb the incident laser beam. A previous study of the transient properties of charged particles in the plasma plume has shown that, at low electron densities with high electron temperatures, laser drilling improves. This suggests that measurement of the absorption of the plasma plume is essential.The present study covers measurement of the absorption of a HeNe beam passing transversely through the plasma plume. The measurement was carried out using two fast response photodiodes and was repeated for sub-atmospheric pressures of air.The results obtained show that drilling is best at a pressure of 200 torr (2.7 x 104 Pa) and rapid expansion of the flares is favourable at 2 mm above the surface. Coupling of absorption and heating is also best at this pressure.  相似文献   

12.
A three-dimensional, semi-stationary, simplified thermal numerical model was developed. The average cutting front temperature difference in disk and CO2 laser beam fusion cutting of 90MnCrV8 was estimated by computing the conductive power loss. Basing on heat affected zone extension experimentally measured and using an inverse methodology approach, the unknown thermal load on the cutting front during laser cutting was calculated. The accuracy of the numerical power loss estimation was evaluated comparing the results from simulation with the ones from analytical models. A good agreement was found for all the test cases considered in this study. The conduction losses estimation was used for justifying the lower quality of disk laser cuts due to the lower average cut front temperature. This results in the increase of viscosity of molten material and in the subsequent more difficult ejection of the melted material from the cut kerf.  相似文献   

13.
In the last few years, lasers have found new applications in production engineering as tools for surface treatment, cutting, welding, drilling and marking. So far, the laser has mainly been used in special laser processing machines (laser-only) directly integrated into a production line or serving as stand-alone stations in the workshop. By combining conventional metal cutting technologies with laser processes in one machine, complete processing of a workpiece with different technologies in one setting can be realized. The main advantages are a reduction of the material flow between the production machines, which leads to a reduction in processing time and logistics, and an enhancement of manufacturing quality due to the processing in one setting. In addition to this approach, new processing technologies such as laser-assisted machining are possible.Applications of laser caving, hardening, welding and drilling of production parts in combination with the cutting process in one setting have been investigated with the aim of adapting these technologies to the characteristics of the machines and the typical parts spectra. Furthermore, various technical solutions for the integration of lasers into milling centres and lathes have been elaborated. In both situations the laser tool is handled like a standard tool and can be exchanged automatically. The main results will be reported, together with a brief discussion of the economic aspects of laser processing integrated into machine tools.This article is based on an invited paper presented at LANE '94, Erlangen, 12–14 October 1994.  相似文献   

14.
With the aim of improving the efficiency of laser drilling, an upward drilling method is proposed. In the experiment, a long pulsed laser beam was arranged to propagate upwards, in the opposite direction to gravity, and was used to drill hole at the bottom of an aluminum slab. A semi-infinite axisymmetric model of this system was also established. The analytical solution for the hole shape was derived by assuming that material, once it melted, was removed from hole with the aid of gravity. The calculation results agreed well with the experimental results. For further verification of the effects of gravity, the removed molten material and the hole shape for the downward (along the gravity direction) and the upward drilling cases were compared experimentally. In addition, the relationships between gravity, the inertia force, the surface tension and the viscosity were discussed. The results show that more molten material is expelled with the assistance of the gravity, and the laser energy is used more efficiently to melt the aluminum slab in the upward drilling.  相似文献   

15.
Periodic arrays of submicron Si and Ni dots were fabricated by only irradiating a linearly polarized Nd:YAG pulsed laser beam to Si and Ni thin films deposited on silicon dioxide (SiO2) film. The interference between an incident beam and a scattered surface wave leads to the spatial periodicity of beam energy density distribution on the surface of the irradiated samples. A thin film was melted using a laser beam, and the molten film was split and condensed owing to its surface tensile according to the periodic energy density distribution. Then, the fine lines (line and space structure) were formed periodically. After the formation of fine lines, the sample was rotated by 90°, and the laser beam was irradiated. The periodic energy density distribution was generated on the fine lines, and the lines were split and condensed. Eventually, the periodically aligned submicron dots were fabricated on the SiO2 film. PACS 79.20.Ds; 42.62.-b; 81.40.-z  相似文献   

16.
Direct removal of SU-8 using focused laser writing   总被引:1,自引:0,他引:1  
SU-8 photoresist is an important material used in the development of micro-devices [1]. Cross-linked SU-8 structures have been known for their thermal stability and their strong resistance to standard solvent, acid and base. Due to the inert properties of this polymer, it is difficult to further modify or remove SU-8 once it is completely cured. We report an effective process to pattern cured SU-8 photoresist on glass using focused laser beam. Laser fabrication has been an important tool in various fields of research [2]. We made use of this laser cutting method to create interesting and useful two-dimensional SU-8 structures. The shapes and sizes of the structures created can be controlled by varying the power of the laser, angle of incident of the focused laser beam, the relative speed with which the laser beam traverse through the SU-8 film and the magnification of objective lens used. Besides two-dimensional structures, we can also create three-dimensional structures. In this case, we made use of a combination of controlled depth cutting and undercutting where focused laser beam is transmitted through the transparent substrate. Some possible applications of the laser patterned SU-8 film are also demonstrated in this work. PACS 42.62-b; 42.82.Cr; 79.60.Fr; 79.20.Ds; 78.66.-w  相似文献   

17.
The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.  相似文献   

18.
为了研究影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的因素,采用飞秒激光对0Cr18Ni9不锈钢进行了切割和打孔实验。利用光学显微镜、光学金相显微镜等设备,对不锈钢烧蚀区形貌和切缝显微组织进行检测,基于烧蚀过程中CCD实时采集到的不锈钢表面的激光光斑图样,采用COMSOL Multiphysic数值模拟软件,模拟了烧蚀过程中激光束的发散传播行为,并计算了光束发散角。结果表明:当激光重复频率为5kHz时,厚度为160μm的0Cr18Ni9不锈钢切缝和孔边缘被明显烧黑,切缝处晶粒明显长大,存在热影响区;烧蚀过程中,由飞秒激光超高功率密度所致的金属-空气混合等离子体使光束沿传播方向上发生散射,发散角在6°~10°之间。热影响区的存在和混合等离子体的行为是影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的主要因素。  相似文献   

19.
Hybrid laser processing for the precision microfabrication of glass materials, in which the interaction of a conventional pulsed laser beam and a medium on the material surface leads to effective ablation and modification, is reviewed. A major role of the medium is to produce strong absorption of the conventional laser beam by the material. Simultaneous irradiation by a vacuum ultraviolet (VUV) laser beam that possesses an extremely small laser fluence and an ultraviolet (UV) laser greatly improves the ablation quality and modification efficiency for fused silica (VUV-UV multiwavelength excitation process). The metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials by the same laser beam, resulting in microstructuring, cutting, color marking, printing, and selective metallization of glass materials (laser-induced plasma-assisted ablation (LIPAA)). The detailed discussion presented here includes the ablation mechanism of hybrid laser processing. Received: 18 December 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +81-48/462-4682, E-mail: ksugioka@postman.riken.go.jp  相似文献   

20.
Fiber laser micro-cutting of stainless steel sheets   总被引:2,自引:0,他引:2  
The authors report on laser micro-cutting results for stainless steel foils with the aid of a 100 W fiber laser. This novel laser source combines a high output power in relation to conventional laser sources for micro-processing applications with an excellent beam quality (M2=1.1). Different material thicknesses were evaluated (100 μm to 300 μm). Processing was carried out with cw operation of the laser source, and with nitrogen and oxygen as assisting gases. Besides the high processing rate of oxygen assisted cutting, a better cutting performance in terms of a lower kerf width was obtained. PACS 42.82.Cr; 42.62.Cf; 81.05.Bx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号