首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strength of the fundamental absorption band of nitric oxide at 5.3 μm and collision halfwidths of nitric oxide lines broadened by nitrogen, argon, and combustion gases were measured in absorption cell, flat flame and shock tube experiments using a tunable diode laser. Room temperature absorption measurements were made in an absorption cell filled with NO/N2 or NO/Ar mixtures or with probe-extracted combustion gases. High temperature (to 2500 K) absorption measurements were performed for NO in N2 and NO in Ar using a shock tube, and for NO in combustion gases using a flat flame burner.Absorption measurements were made on lines from 1860–1925 cm?1, (Ω=12 and 32,P(52-R (292)) resulting in a band strength of 123±8 cm-2 atm?1 at 273.2 K. Collision halfwidth dependencies for each broadening species were examined as a function of rotational quantum number and temperature.  相似文献   

2.
An optical sensor based on differential absorption spectroscopy for real-time monitoring of industrial nitric oxide (NO) gas emission is described. The influence of gas absorption interference from sulfur dioxide (SO2) in the environment was considered and a spectral separation technique was developed in order to eliminate this interference effect. The absorption spectrum of SO2 around 226 nm was evaluated by the SO2 concentration obtained using the experimentally recorded absorption spectrum around 300 nm. The absorption spectrum of NO around 226 nm was obtained by subtracting the absorption of SO2 from the integral absorption spectrum of SO2 and NO. The concentration measurements were performed at atmospheric pressure. The technique was found to have a lower detection limit of 0.8 ppm for NO per meter path length (SNR=2) and be immune from the influence from SO2 on the NO measurement. The sensor based on this technique was successfully employed for in situ measurement of SO2 and NO concentrations in the flue gas emitted from an industrial coal-fired boiler.  相似文献   

3.
We present a multi-species mole fraction and temperature sensor for in situ exhaust gas diagnostic of internal combustion (IC) engines. The sensor is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) and incorporates four optical channels - two miniature White cells and two double-traversal cells - with base lengths of 6?cm. It has been demonstrated at a hot air test stand and in the exhaust manifold of a single-cylinder research engine, with measured temperatures of up to 1000?K. Stable operation was achieved with absorption lengths of up to 192?cm (test stand) and 97?cm (engine). Employing time-division multiplexed detection, six species were measured simultaneously in the engine exhaust, at wavelengths ranging from 1.4?µm to 5.2 µm: water vapor (H2O), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2) and nitric oxide (NO). The effective measurement rate was as high as 1?kHz, and cycle-to-cycle variations were clearly detected. We show the correlation of the air-fuel equivalence ratio with the spectroscopically measured mole fraction of each species. At a cycle-resolved rate, detection limits for the legally regulated species NO and NO2 were 1?ppm and 4?ppm, respectively. The sensor is intended to help improve the understanding of IC engine emission behavior during fast transients.  相似文献   

4.
One of the main concerns regarding ammonia combustion is its tendency to yield high nitric oxide (NO) emissions. Burning ammonia under slightly rich conditions reduces the NO mole fraction to a low level, but the penalties are poor combustion efficiency and unburnt ammonia. As an alternative solution, this paper reports the experimental investigation of premixed swirl flames fueled with ammonia-hydrogen mixtures under very-lean to stoichiometric conditions. A gas analyzer was used to measure the NO mole fraction in the flame and post flame regions, and it was found that low NO emissions (as low as 100 ppm) in the exhaust were achieved under very lean conditions (? ≈ 0.40). Low NO emission was also possible at higher equivalence ratios, e.g. ? = 0.65, for very large ammonia fuel fractions (XNH3 > 0.90). 1-D flame simulations were performed to elaborate on experimental findings and clarify the observations of the chemical kinetics. In addition, images of OH* chemiluminescence intensity were captured to identify the flame structure. It was found that, for some conditions, the OH* chemiluminescence intensity can be used as a proxy for the NO mole fraction. A monotonic relationship was discovered between OH* chemiluminescence intensities and NO mole fraction for a wide range of ammonia-hydrogen blends (0.40 < ? < 0.90 and 0.25 < XNH3 < 0.90), making it possible to use the low-cost OH* chemiluminescence technique to qualify NO emission of flames fueled with hydrogen-enriched ammonia blends.  相似文献   

5.
Spatially and spectrally resolved in-cylinder absorption measurements were performed in spark-ignited internal combustion engines and in Diesel engines. With UV-broadband illumination it was shown that the UV attenuation occurs throughout the burned gas area with roughly homogeneous absorption cross-sections. Model calculations based on the absorption properties of CO2 at elevated temperatures show that this species gives the main contribution to in-cylinder UV absorption. A previously suggested technique of assessing UV absorption using O2 laser-induced fluorescence (LIF) as probe light is successfully applied to in-cylinder measurements of the light absorption inside a fired heavy-duty Diesel engine. Even in this environment, the comparison with model calculations shows that CO2 is the main contributor to UV light absorption. Since the O2-LIF absorption technique is based on the identical geometry used for LIF concentration measurements, the results can directly be used for correcting LIF signal data such as that obtained from NO imaging. Received: 20 April 2001 / Published online: 18 July 2001  相似文献   

6.
We report the first application of degenerate four-wave mixing (DFWM) to combustion diagnostics in a methane-fuelled internal combustion research engine. Combustion-generated NO in the spark-ignited engine was detected using scanning narrowband DFWM in a modified forward folded BOXCARS geometry. The resulting spectra of the X2Π-A2Σ+(0,0) band at 226 nm display an excellent signal-to-noise ratio. Extension of the technique to different engine operating conditions and to time-resolved multiplex DFWM is discussed. Received: 3 May 2001 / Revised version: 1 October 2001 / Published online: 29 November 2001  相似文献   

7.
The present study extends the Nitrogen Oxide Relaxation Approach (NORA [Vervisch et al., Combust. Flame 158 (2011) 1480–1490]) for NOx modelling in engines by introducing alternative chemical routes to the thermal pathway as well as a speciation of nitrogen oxides into nitrogen monoxide (NO), nitrogen dioxide (NO2) and nitrous oxide (N2O). Perturbations of equilibrium state are considered to identify nitrogen oxide reactivity in various mixture and thermodynamic conditions. A common Intrinsic Low-Dimensional Manifold (ILDM) is identified for NO and NO2, while nitrous oxides appear to stay in near-equilibrium state for any in-cylinder conditions. The relaxations back towards the equilibrium state after the perturbations are analysed to extract the characteristic times of relaxation, an image of the species reactivity. Tabulation of equilibrium mass fractions and characteristic relaxation times as a function of mixture and thermodynamic conditions allows nitrogen oxide modelling to be performed for internal combustion engines at very low computational cost through idealised ILDMs that are independent of the combustion ones. Results show the accuracy of the modelling approach for nitrogen oxide emissions of a Diesel engine at part and full load.  相似文献   

8.
With the growing attention on ammonia (NH3) combustion, understanding NH3 and nitric oxide (NO) interaction at temperatures higher than DeNOx temperature region or even flame temperature becomes a new research need. In this work, the outwardly propagation spherical flame method was used to investigate the laminar flame propagation of NH3/NO/N2 mixtures and constrain the uncertainties of the specific kinetics. The present experiments were conducted at initial pressure of 1 atm, temperature of 298 K and equivalence ratios from 1.1 to 1.9. A kinetic model of NH3/NO combustion was updated from our previous work. Compared with several previous models, the present model can reasonably reproduce the laminar burning velocity data measured in this work and speciation data in literature. Based on model analyses, the interaction of NH3 and NO was thoroughly investigated. As both the oxidizer and a carrier of nitrogen element, NO frequently reacts with different decomposition products of NH3 including NH2, NH and NNH, and converts nitrogen element to the final product N2. It is found that the laminar burning velocity experiment of NH3/NO/N2 mixtures using the outwardly propagating spherical flame method can provide highly sensitive validation targets for the kinetics in NH3 and NO interaction.  相似文献   

9.
NO formation and flame propagation are studied in premixed flames of iso- and n-isomers of butane and butanol through experimental measurements and direct simulation of experimental profiles. The stabilized flame is realized through the impingement of a premixed combustible jet from a contraction nozzle against a temperature-controlled plate. The velocity field is obtained by means of Particle Image Velocimetry (PIV) and nitric oxide concentration profiles are measured using Planar Laser Induced Fluorescence (PLIF), calibrated using known NO seeding levels. It is found that NO formation in n- and iso-isomers is comparable under the conditions considered, except for rich butanol mixtures, whereby NO formation is higher for iso-butanol. Generally, less NO is formed in butanol flames than in the butane flames. The experiment is simulated by a 1D chemically reacting stagnation flow model, using literature models of C1–C4 hydrocarbons [Wang et al., 2010] and butanol combustion chemistry [Sarathy et al., 2009, 2012]. NO prediction is tested using two of these mechanisms with a previously-published NOx submechanism added into the butane and butanol models. While a good level of agreement is observed in the velocity field prediction under lean and stoichiometric conditions, discrepancies exist under rich conditions. Greater discrepancies are observed in NO prediction, except for the C1–C4 mechanism which shows good agreement with the experiment under lean and stoichiometric conditions. The current study provides data for further development of mechanisms with NOx prediction capabilities for the fuels considered here.  相似文献   

10.
Mechanisms of homogeneous charge compression ignition (HCCI) combustion enhancement are investigated numerically when excited O2(a 1Δg) molecules are produced at different points in the compression stroke. The analysis is conducted with the use of an extended kinetic model involving the submechanism of nitric oxide formation in the presence of singlet oxygen O2(a 1Δg) or O2(b 1Σg +) molecules in the methane-air mixture. It is demonstrated that the abundance of excited O2(a 1Δg) molecules in the mixture even in a small amounts intensifies the ignition and combustion and allows one to control the ignition event in the HCCI engine. Such a method of energy supply in the HCCI engine is much more effective in advancement of combustion timing than mere heating of the mixture, because it leads to acceleration of the chain-branching mechanism. The excitation of O2 molecules to the a 1Δg electronic state makes it possible to organise the successful combustion in the cylinder at diminished initial temperature of the mixture and increase the effective energy released during HCCI combustion. The advance in the value of this energy is much higher than the energy needed for the excitation of oxygen molecules. Moreover, in this case, the output concentration of NO and CO can be reduced significantly.  相似文献   

11.
A mid-infrared absorption strategy with calibration-free wavelength-modulation-spectroscopy (WMS) has been developed and demonstrated for real-time, in situ detection of nitric oxide in particulate-laden combustion-exhaust gases up to temperatures of 700 K. An external-cavity quantum-cascade laser (ECQCL) near 5.2 μm accessed the fundamental absorption band of NO, and a wavelength-scanned, 1f-normalized WMS with second-harmonic detection (WMS-2f/1f) strategy was developed. Due to the external-cavity laser architecture, large nonlinear intensity modulation (IM) was observed when the wavelength was modulated by injection-current modulation, and the IM indices were also found to be strongly wavelength-dependent as the center wavelength was scanned with piezoelectric tuning of the cavity. A quantitative model of the 1f-normalized WMS-2f signal was developed and validated under laboratory conditions. A sensor was subsequently designed, built and demonstrated for real-time, in situ measurements of NO across a 3 m path in the particulate-laden exhaust of a pulverized-coal-fired power plant boiler. The 1f-normalized WMS-2f method proved to have better noise immunity for non-absorption transmission, than wavelength-scanned direct absorption. A 0.3 ppm-m detection limit was estimated using the R15.5 transition near 1927 cm−1 with 1 s averaging. Mid-infrared QCL-based NO absorption with 1f-normalized WMS-2f detection shows excellent promise for practical sensing in the combustion exhaust.  相似文献   

12.
Co-firing ammonia (NH3) and hydrogen (H2) or H2-rich fuel and partially cracking NH3 are promising non-carbon combustion techniques for gas turbines and marine engines, raising a growing need to understand the interactions of H2 and nitric oxide (NO) as well as the non-hydrocarbon nitrogen oxides (NOX) reduction mechanism under flame conditions. In this work, the outwardly propagating spherical flame method was used to investigate the laminar flame propagation of H2/NO and H2/NO/nitrogen (N2) mixtures at initial pressure (Pu) of 2 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.2-1.4. The laminar burning velocities (LBVs) of H2/NO mixtures are generally 5-10 times lower than those of H2/air mixtures, while the dilution of N2 can dramatically inhibit the laminar flame propagation. A kinetic model of H2/NO combustion was constructed and validated against the new data in this work and other types of experimental data in literature. The modeling analyses reveal that NO+H=N+OH becomes the most important chain-branching reaction in H2/NO reaction system, while the LBV data of H2/NO mixtures in this work can provide highly sensitive validation targets for the kinetics in H2 and NO interactions. Furthermore, the NO reduction to N2 mainly proceeds through NO+N=N2+O under various H2/NO ratios, and NO+O=N+O2 is found to have a significant contribution to NO reduction under NO-rich conditions.  相似文献   

13.
The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem. 2009;41:785–795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with 15N ammonium, 15N nitrate, and 15N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the 15N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50 % of the total soil N2O release. Under anoxic conditions, denitrification was the dominant process for soil N2O release. The relative contribution of Norg to the total soil NO release was small. Ammonia oxidation served as the major pathway of soil NO release under oxic and hypoxic conditions, while denitrification was dominant under anoxic conditions. The model parameters for soil with moderate soil organic matter (SOM) content were not scalable to an additional data set for soil with higher SOM content, indicating a strong influence of SOM content on microbial N turnover. Thus, parameter estimation had to be re-calculated for these conditions, highlighting the necessity of individual soil-dependent parameter estimations.  相似文献   

14.
Adsorption isotherms have been measured at 77.5 K for nitric oxide and nitrogen on Al2O3, MgO, ZnO and NiO, and at 90.2 K. for nitric oxide on A12O3 and NiO. Three isotherm measurements at 77.5 K were made on the Al2O3 sample for each adsorbate to examine the effect of different degrees of surface dehydroxylation. The latter was assessed by means of infrared absorption studies on an Al2O3 disc. Isosteric heats for NO adsorption on Al2O3 and NiO increase from ca. 8 kJ mol?1 and 6 kJ mol?1 (respectively) at half monolayer coverage to near the value of the enthalpy of sublimation (16.6 kJ mol?1) at monolayer completion. These results are discussed in terms of adsorbate dimerisation. Anomalous adsorption-desorption behaviour for the NONiO system is discussed. Effective adsorbate molecular cross-sectional areas and results for N2 adsorption on preadsorbed NO do not support the existence of either localisation or micro-porosity.  相似文献   

15.
Absorption spectra of nitric oxide in the γ(0,0) and γ(1,0) bands have been measured for hard temperature conditions up to 1700 K in order to validate a model for the simulation of these two bands. The good agreement between experiments and calculations (relative errors of 2–5% for the γ(0,0) band and 10–15% for the γ(1,0) band) consolidates the two important assumptions concerning the intermediate Hund's case between (a) and (b) for the X2Π state of the γ(0,0) and γ(1,0) absorption bands and the use of collisional broadening parameters of γ(0,0) to simulate the γ(1,0) band. Using this simulation, a study of the Beer–Lambert law behavior at high temperature has been carried out. With the instrument resolution used for these experiments, it was shown that a correction of the Beer–Lambert law is necessary. To apply this technique for the measurements of NO concentrations inside the combustion chamber of an optical SI engine, a new formulation of the Beer–Lambert law has been introduced, since the modified form proposed in the literature is no longer applicable in the total column range of interest.  相似文献   

16.
A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.  相似文献   

17.
We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and for the pressure and temperature dependence of the fluorescence efficiency, based on numerical modelling. These corrections are largest early in the stroke, when quenching rates are high and UV transmission is low. Together, they vary over more than three orders of magnitude during the combustion stroke. Fully quantitative results are realised by an overall calibration using independent concentration measurements in the exhaust gas. The data provide evidence of NO formation during both the premixed and mixing-controlled combustion phases.  相似文献   

18.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

19.
Co-firing methane (CH4) and ammonia (NH3) has attracted growing concerns as a feasible greenhouse gas reduction strategy in gas turbine-based power generation, which raises the need to better understand the interaction of methane and nitric oxide (NO) under flame conditions. In this work, laminar flame propagation of CH4/NO mixtures at initial pressure (Pu) of 1 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.4–1.8 was experimentally investigated using a constant-volume combustion vessel. Laminar burning velocities (LBVs) and Markstein lengths were experimentally determined. A kinetic model of CH4/NO combustion was developed with rate constants of several important reactions updated, presenting reasonable predictions on the measured LBVs of CH4/NO mixtures. The modeling analyses reveal that the reduction of NO can proceed through two mechanisms, i.e. the hydrocarbon NO reduction mechanism and non-hydrocarbon NO reduction mechanism. Among the two mechanisms, the non-hydrocarbon NO reduction mechanism which includes reactions NO+H = N+OH, NO+O = N + O2 and NO+N = N2+O has a higher contribution to NO reduction at the equivalence ratio of 0.6, while the hydrocarbon NO reduction mechanism with hydrocyanic acid (HCN) as the key intermediate plays a more important role at the equivalence ratio of 1.8. NO+H = N+OH and CH3+NOHCN+H2O are found to be the two most sensitive reactions to promote the flame propagation, while the LBVs measured in this work are demonstrated to provide strong constraint for these reactions. Furthermore, previous CH4/O2/NO oxidation data measured in flow reactor and rapid compression machine were also simulated, which provides extended validation of the present model over wider conditions.  相似文献   

20.
A comprehensive two-dimensional multi-zone model of a diesel engine cycle is presented in this study, in order to examine the influence of insulating the combustion chamber on the performance and exhaust pollutants emissions of a naturally-aspirated, direct injection (DI), four-stroke, water-cooled diesel engine. The heat insulation is taken into account by the corresponding rise of wall temperature, since this is the final result of insulation useful for the study. It is found that there is no remarkable improvement of engine efficiency, since the decrease of volumetric efficiency has a greater influence on it than the decrease of heat loss to the coolant, which is converted mainly to exhaust gas enthalpy (significant rise of the exhaust gas temperature). As far as the concentration of exhaust pollutant emissions is concerned, it is found that the rising heat insulation leads to a significant increase of the exhaust nitric oxide (NO) and to a moderate increase of the exhaust soot concentration. Plots of temperature, equivalence ratio, NO and soot distributions at various instants of time inside the combustion chamber, emanating from the application of the multi-zone model, aid the correct interpretation of the insulation effects gaining insight into the underlying mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号