首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
衍射型长程大型非球面轮廓测量仪   总被引:5,自引:3,他引:2  
李直  赵洋  李达成  肖体乔  夏绍建 《光学学报》2002,22(10):224-1228
分析了基于衍射准直技术的f-θ系统的特点,在此基础上提出了一种新型长程面形仪用以实现对大型非球面光学表面,特别是同步辐射中掠入射光学元件的高精度轮廓测量。成功地研制了样机,目前新型长程面形仪样机的纵向扫描范围可达370mm,分辨率优于0.25μrad,单点稳定性小于0.7μrad/200s,全程测量精度可达1.14μrad,全长扫描的重复精度为0.09μrad。样机测试结果表明,新型长程面形仪轮廓测量方案能够胜任对第三代及后继同步辐射光源中各种非球面光学元件的轮廓测量任务。  相似文献   

2.
An optical channel for extracting, transporting, and applying (to a detector) IR synchrotron radiation covering a wide wavelength range is developed. The design and study of optical systems with long-focus entrance objective and mirror lenses, as well as with a field condenser lens, are reported. Practical use of IR optics combined with integrated and position-sensitive detectors in accelerator experiments with synchrotron radiation is described.  相似文献   

3.
DISCO, a novel low‐energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a `classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large‐aperture bending‐magnet source. Results are also reported concerning the cold finger used to absorb hard X‐ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set‐up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.  相似文献   

4.
The unprecedented brilliance achieved by third‐generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X‐ray beamlines, and the first test results at Diamond are discussed in this paper.  相似文献   

5.
6.
This review is devoted to an analysis of the properties and potentiality of optical synchrotron diagnostics, which is now a flexible means to study bunches (beams) of charged particles during their acceleration (storage) and interaction. The review briefly describes the history and main optical features of the devices used in experimental investigations of synchrotron radiation, beginning with the studies at the Lebedev Physical Institute. More elaborately considered is the infrared synchrotron method of diagnostics, which was developed at the Joint Institute for Nuclear Research and is based on optical methods developed at the Lebedev Physical Institute and Moscow State University. The main attention of the practical experiments is focused on designing, creating, and using special (broadband and long-focus) infrared optics, including mirrors, lenses, and heat-resistant windows. The merits and advantages of infrared diagnostics in comparison with optical diagnostics are shown in real examples.  相似文献   

7.
We have constructed an extremely precise optical system for hard-x-ray nanofocusing in a synchrotron radiation beamline. Precision multilayer mirrors were fabricated, tested, and employed as Kirkpatrick-Baez mirrors with a novel phase error compensator. In the phase compensator, an at-wavelength wavefront error sensing method based on x-ray interferometry and an in situ phase compensator mirror, which adaptively deforms with nanometer precision, were developed to satisfy the Rayleigh criterion to achieve diffraction-limited focusing in a single-nanometer range. The performance of the optics was tested at BL29XUL of SPring-8 and was confirmed to realize a spot size of approximately 7 nm.  相似文献   

8.
The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.  相似文献   

9.
介绍了双压电片镜自适应光学技术,同时为其在同步辐射光学领域中的应用与进一步发展提供前瞻性的思考与探索。根据目前已公开发表的相关文献资料,总结介绍了双压电片镜自适应光学技术,阐述了该技术的工作机理与关键参数,并对其在国际上具有代表性的同步辐射机构中的应用情况作出描述,并指出涉及的关键技术问题与未来的发展趋势:不仅要有效地解决"连接点效应"对双压电片镜技术的负面影响,还要实现亚微米乃至纳米级的聚焦光斑,这两项内容都是双压电片镜技术需要进一步解决的重要问题。未来,双压电片镜自适应光学技术可望在我国先进的第三代同步辐射装置—"上海光源(Shanghai Synchrotron Radiation Facility,SSRF)"二期工程建设中得到应用。  相似文献   

10.
According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.  相似文献   

11.
The results of analytical and experimental investigations aimed at increasing laser-radiation resistance of materials for IR optics and developing high-power optics for microsecond TEA CO2 lasers with energy per pulse up to 12–25 kJ and gas-dynamic CO2 lasers with energy per pulse up to 130 kJ are presented. It is demonstrated that the integrated approach that combines the improvement of already existing technological methods and the development of novel technological methods for refining the parameters of materials for transmission IR optics (including techniques of growth of single crystals, strain hardening, and laser, ionic, and chemical treatment), the design and optimization of optical units (including the development of segmented transmission optics, the improvement of optical schemes for spatial formation of laser beams, the use of fast-response physical effects to screen optical elements from high-power fluxes of laser radiation) is necessary to solve this problem.  相似文献   

12.
The principles behind the design and operation of polarizationbased optics for nuclear resonant scattering of synchrotron radiation are discussed. With perfect single crystals and collimated Xrays emitted from undulatorbased thirdgeneration synchrotron radiation sources, polarizationselective optics with a sensitivity of parts per billion can be obtained. A general approach to optical activity is introduced, and the polarization dependence of the index of refraction is calculated for nuclear forward scattering for a medium with unidirectional symmetry. Some recent experimental results are reviewed and future applications are discussed.  相似文献   

13.
随着高性能第三代同步辐射光源的建成开放,基于X射线相干特性的实验方法得到了快速发展和广泛应用.作为一个典型的例子,X射线相位衬度成像已经成为常规的X射线实验方法并向用户开放.相干散射、相干衍射成像、光子关联谱等X射线实验方法正日益受到重视,在高空间分辨、时间分辨等研究领域已显示出其独特的优越性.因此,研究和测量第三代同步辐射的空间相干特性对进一步发展这些新的实验方法具有重要意义.基于Talbot自成像原理成功测量了上海光源X射线成像线站发射的X射线的空间相干长度,并进而测得了相应光源的空间尺度.光子能量为33.2 keV时,测得的X射线光束垂直方向空间相干长度为8.84μm,对应的光源尺寸为23μm,测量结果与理论分析相符.  相似文献   

14.
Laser-produced plasma sources of short-wavelength radiation offer an interesting alternative to synchrotron and free-electron laser installations. Recently, we reported on a newly developed desktop EUV microscope based on plasma generated from a gas-puff target and diffractive optics. The half-pitch resolution of the microscope approached 50?nm. Compared to analogous microscopes based on synchrotron sources, our system is compact and cost-effective. In this paper, we present the results of imaging experiments on a thin polycrystalline object that was carried out in order to further examine the applicability of the microscope. We have demonstrated here that EUV microscopy can provide structural information that cannot be accessed by conventional optical microscopy or SEM.  相似文献   

15.
We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.  相似文献   

16.
Cheng D  Wang Y  Hua H  Sasian J 《Optics letters》2011,36(11):2098-2100
We present a concept of a wide-angle, lightweight, optical see-through head-mounted display (HMD) using free-form optics tiling. Free-form optics tiling can potentially address several critical problems in existing tiled HMD designs that use rotationally symmetric optics. The optical design of our tiled optical see-through HMD achieves a field of view (FOV) of 56° × 45° and an angular resolution of 3.2 arcmin with two display channels. We demonstrate a proof-of-concept prototype and present some of its manufacturing details. The FOV can be further enlarged by tiling more display channels together at their bottom and side surfaces.  相似文献   

17.
Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending‐magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal‐shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending‐magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.  相似文献   

18.
林跃  王润文 《光学学报》1991,11(4):94-300
本文报道一套光学结构用于同步辐射反射镜表面轮廓高精度大面积的测量。采用了光学外差测量与接收技术,以伺服聚焦双折射透镜组分离“o”光与“e”光的聚焦区域,并再共轴组合比较其相位差,从而获得表面起伏的误差值。线性运动的测量工作台使镜面可测量范围从数微米到一米,而最小起伏量及曲率可达很高的测量精度。  相似文献   

19.
A new technology for generating steady state, brilliant, broadband, coherent, far-infrared (FIR) radiation in electron storage rings is presented, suitable for FIR spectroscopy. An FIR power increase of up to 100 000 compared to the normal, incoherent synchrotron radiation in the range of approximately 5 to approximately 40 cm(-1) could be achieved. The source is up to 1000 times more brillant compared to a standard Hg arc lamp. The coherent synchrotron radiation is produced in a "low alpha" optics mode of the synchrotron light source BESSY, by bunch shortening and non-Gaussian bunch deformation.  相似文献   

20.
Vacuum‐ultraviolet radiation delivered by bending‐magnet sources is used at numerous synchrotron radiation facilities worldwide. As bending‐magnet radiation is inherently much less collimated compared with undulator sources, the generation of high‐quality intense bending‐magnet vacuum‐ultraviolet photon beams is extremely demanding in terms of the optical layout due to the necessary larger collection apertures. In this article, an optimized optical layout which takes into account both the optical and electron beam properties is proposed. This layout delivers an improved beam emittance of over one order of magnitude compared with existing vacuum‐ultraviolet bending‐magnet beamlines that, up to now, do not take into account electron beam effects. The arrangement is made of two dedicated mirrors, a cylindrical and a cone‐shaped one, that focus independently both the horizontal and the vertical emission of a bending‐magnet source, respectively, and has been already successfully applied in the construction of the infrared beamline at the Brazilian synchrotron. Using this scheme, two vacuum‐ultraviolet beamline designs based on a SOLEIL synchrotron bending‐magnet source are proposed and analysed. They would be useful for future upgrades to the DISCO beamline at SOLEIL and could be readily implemented at other synchrotron radiation facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号