首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
提出了气相原子、分子碰撞形成团簇的动力学一般模型,认为具有特定组份单元的粒子经碰撞后可任意组合成团簇.各缔合速率常数随团簇的尺寸和结构特征而变化.团簇的热解离速率主要取决于断键数.因此裂解出小碎片的几率较大.将上述模型用动力学方程表示,可计算在不同时刻的团簇尺寸分布.最后分析了激光烧蚀、电弧放电等几种形成团簇方法的具体条件.  相似文献   

2.
气相中原子分子成簇动力学 I. 动力学的基本模型   总被引:1,自引:1,他引:1  
提出了气相原子,分子碰撞形成团簇的动力学一般模型,认为具有特定组分份单元的粒子经碰撞后可任意组合成团簇,各缔合速率常数随团簇的尺寸和结构特征而变化,团簇的热解离速率主要取决于断键数,因此裂解出小碎片的几率较大,将上述模型用动力学方程表示,可计算在不同时刻的团簇尺寸分布,最后分析了激光烧蚀,电弧放电等几种形成团簇的方法的具体条件。  相似文献   

3.
银和硫团簇的反应   总被引:1,自引:0,他引:1  
研究气相中原子或团簇的化学反应可以使我们从分子水平上研究化学反应的机理.激光溅射固体样品产生团簇,进而研究所形成团族的化学反应是研究团簇反应的一种方法.用高强度激光使固体样品气化,气化物彼此碰撞反应并在真空中膨胀冷却形成团簇和团簇离子,这一类反应是成...  相似文献   

4.
铜氧团簇负离子的产生   总被引:2,自引:0,他引:2  
自Smalley等利用激光蒸发/超声分子束载带(ix/un)法产生c。。问起,这种方法逐渐成为形成高质量气相团簇的常用实验手段,其中分子束载带的主要作用是缓冲气体通过提供三体碰撞稳定动力学激发的团簇并促进高质量团簇的形成.但0’Keef6门和Cre。Sy同的实验发现无需利用缓冲  相似文献   

5.
金-硫团簇负离子组成特征的探讨   总被引:3,自引:0,他引:3  
报导了金/硫靶在静态二次离子质谱实验条件下形成的组成通式为Au1-15S0-5的团簇负离子.其中,Aun组成系列具有典型的奇数优势,属于金的一元团簇负离子.其余组成系列(Au1-15S1-5)则属于金 硫二元团簇负离子.研究发现,金 硫团簇负离子具有以下与组成密切相关的特征: (1)它们继承了金一元团簇负离子的奇数优势;(2)它们中硫原子数仅限于5,而金原子数则在较大范围变化;(3)它们完全没有多数其它金属与非金属(包括硫)二元团簇正/负离子共有的MenNn型组成优势;(4)它们以上组成特征及其它细节恰似碳 磷这样的典型非金属二元团簇正/负离子.基于这样的组成特征可提出,金 硫团簇负离子在构成上包含着相对完整的金一元团簇组件,在形成机制上源于金一元团簇与硫一元团簇(或称为:限于五原子的多硫单元)之间的再团簇化.关于再团簇化机制中的相互作用问题,即两类团簇间是依靠末端原子交叉成键还是依赖两类团簇中异种原子之间静电诱导力等“非共价键”作用的问题,则有待于今后研究证实.  相似文献   

6.
研究原子团簇上小分子的吸附和反应对认识一些复杂化学过程的微观机理非常重要,为了表征小分子如何吸附在原子团簇上,我们研制了一套氦原子碰撞诱导解离串级飞行时间质谱装置.该装置配有激光溅射团簇源,团簇在快速流动管里与一氧化碳、水等小分子发生反应,产物团簇通过第一级飞行时间质谱选质后与一束氦气(He)发生碰撞,使用第二级飞行时间质谱检测碰撞碎片的分布.结果表明:一些过渡金属氧化物团簇上小分子的弱吸附、强吸附以及氧化性吸附能够通过该实验装置进行表征.  相似文献   

7.
用准经典轨线方法研究了处于振动激发态的硅原子团簇与硅原子团簇碰撞的反应动力学,计算表明,对于Si4+Si3反应,当反应物团簇处于振动激发态时,有利于生成更小团簇的碎片,而对生成Si6+Si及Si5+Si2的影响不大。  相似文献   

8.
王坤  刘娟芳  陈清华 《物理化学学报》2015,31(11):2091-2098
运用分子动力学模拟方法研究了常温下较大的钯团簇以不同初始速度撞击不同硬度基板的微观过程,着重分析了沉积形貌的变化、团簇的嵌入深度和原子的扩散程度、基板碰撞接触区域的温度演变以及碰撞过程中团簇与基板间的能量转化,获得了沉积过程中变形形貌、结构特征及能量转化随团簇尺寸、初始速度及基板材质的变化规律.并进一步探究了第二颗团簇以不同时刻沉积时前一团簇的变形形貌及基板接触区域温度变化的特点,发现短时间间隔下第二颗团簇的沉积更有利于团簇与基板的结合.  相似文献   

9.
报道了用质谱学方法首次测得的大气中各种水的团簇分布情况. 表明在室内大气环境下, 水主要是以几个至几十个水分子所组成的分子团簇的形式存在, 且团簇的分布与空气湿度, 即水在空气中的分压有关. 实验中, 除观测到空气中也存在前人已报道过的具有笼状结构的H+(H2O)21外, 还观测到其他几种较稳定结构的水的团簇, 即H+(H2O)4, H+(H2O)10和H+(H2O)15. 实验中所测得的水分子团簇分布结果与使用的离子源以及质量分析器种类无关. 我们还用碰撞诱导解离(CID)的方法研究了H+(H2O)n (n=4~16)离子的碰撞解离产物, 结果表明, 对于H+(H2O)n (n=4~16)的离子, 其较稳定的离子的碰撞解离产物均为H+(H2O)n (n=4~6). 我们还进一步研究了H+(H2O)10离子的碰撞解离产物与碰撞气体(即Ar气)密度的关系, 得到了碰撞气体密度与碰撞解离产物分布的关系.  相似文献   

10.
研究团控的形成条件、形成机理是目前团簇科学中的一个热点领域[‘].产生气相团簇的方法主要有Knudsen高温炉扩散法、粒子溅射法、激光气化/分子束法、直接激光气化法·因为不需要另加缓冲气体,直接激光气化法【刀具有对体系真空要求较低,装置简单,容易和飞行时间质谱结  相似文献   

11.
We have measured fragmentation cross sections of protonated water cluster cations (H(2)O)(n=30-50)H(+) by collision with water molecules. The clusters have well-defined sizes and internal energies. The collision energy has been varied from 0.5 to 300 eV. We also performed the same measurements on deuterated water clusters (D(2)O)(n=5-45)D(+) colliding with deuterated water molecules. The main fragmentation channel is shown to be a sequential thermal evaporation of single molecules following an initial transfer of relative kinetic energy into internal energy of the cluster. Unexpectedly, that initial transfer is very low on average, of the order of 1% of collision energy. We evaluate that for direct collisions (i.e., within the hard sphere radius), the probability for observing no fragmentation at all is more than 35%, independently of cluster size and collision energy, over our range of study. Such an effect is well known at higher energies, where it is attributed to electronic effects, but has been reported only in a theoretical study of the collision of helium atoms with sodium clusters in that energy range, where only vibrational excitation occurs.  相似文献   

12.
Molecular dynamics (MD) is an essential tool for correlating collision cross-section data determined by ion mobility spectrometry (IMS) with candidate (calculated) structures. Conventional methods used for ion structure determination rely on comparing the measured cross-sections with the calculated collision cross-section for the lowest energy structure(s) taken from a large pool of candidate structures generated through multiple tiers of simulated annealing. We are developing methods to evaluate candidate structures from an ensemble of many conformations rather than the lowest energy structure. Here, we describe computational simulations and clustering methods to assign backbone conformations for singly-protonated ions of the model peptide (NH2-Met-Ile-Phe-Ala-Gly-Ile-Lys-COOH) formed by both MALDI and ESI, and compare the structures of MIFAGIK derivatives to test the ‘sensitivity’ of the cluster analysis method. Cluster analysis suggests that [MIFAGIK + H]+ ions formed by MALDI have a predominantly turn structure even though the low-energy ions prefer partial helical conformers. Although the ions formed by ESI have collision cross-sections that are different from those formed by MALDI, the results of cluster analysis indicate that the ions backbone structures are similar. Chemical modifications (N-acetyl, methylester as well as addition of Boc or Fmoc groups) to MIFAGIK alter the distribution of various conformers; the most dramatic changes are observed for the [M + Na]+ ion, which show a strong preference for random coil conformers owing to the strong solvation by the backbone amide groups.  相似文献   

13.
14.
First results are presented from a new apparatus, consisting of a supersonic beam for generating neutral clusters, a variable energy electron gun for ionizing the clusters, and a tandem mass spectrometer set-up for studying surface induced reactions of mass and energy selected cluster ions. Rare gas cluster ions, fragment ions from SF6, benzene ions and benzene cluster ions have been investigated so far. Cluster ion dissociation, intracluster ion molecule reactions and surface reactions with adsorbed hydrocarbons have been shown to be important reaction channels for these ion-surface collision at energies ranging from a few eV to 500 eV. The surface induced fragmentation spectrum is demonstrated to be a useful tool for probing binding energy and structure of cluster ions.  相似文献   

15.
The collisional velocity dependence of the cross sections for fragmentation of mass-selected (CO2) n + (n+2...7) clusters in collisions with Ar atoms is presented. Interesting structure can be observed in the cross sections which indicate that the collision occurs between the Ar atom and one CO2 molecule within the cluster. The results may be explained by assuming that the collision leads to either vibrational excitation of a loosely bound CO2 monomer which then leaves the cluster or excitation of the entire cluster to a dissociative state.  相似文献   

16.
An incorporation of ND(3) into protonated ammonia cluster ions NH(4)(+)(NH(3))(n-1) (n=3-9), together with a dissociation of the cluster ions, was observed in the collision of the cluster with ND(3) at collision energies ranging from 0.04 to 1.4 eV in the center-of-mass frame. The branching fractions of the cluster ion species produced in the reactions were obtained as a function of the collision energy. The branching fractions of the incorporation products were successfully explained in terms of the Rice-Ramsperger-Kassel (RRK) theory at collision energies lower than the binding energy of the cluster ion. In addition, the internal energy distributions of the parent cluster ions were determined, and found to be in good agreement with those predicted using the evaporative ensemble model. In incorporations at collision energies lower than the binding energy of the cluster ion, all of the collision energy was transferred to the internal energy of the cluster ions; subsequently, an evaporation of ammonia molecules occurred in an equilibrium process after a complete energy redistribution in the clusters. In contrast, at collision energies higher than the binding energy of the cluster ion, a release of an ammonia molecule from the incorporation products occurred in a nonequilibrium process. The transition from the complex mode to the direct mode in the incorporation was observed at collision energies approximately equal to the binding energy. On the other hand, the collision energy dependence of the cross sections for the dissociation and for a nonreactive collision were estimated by a RRK simulation in which the collision energy transfer was interpreted by using the classical hard-sphere collision model. A relationship between reactivity and reaction modes in the collision of NH(4)(+)(NH(3))(4) with ND(3) is discussed via a comparison of the experimental results with the RRK simulation.  相似文献   

17.
With in the framework of distance dependent tight-binding molecular dynamics (DDTBMD), the collision dynamics of sodium cluster Na n has been studied systematically. Some phenomena have been observed at different impact parameters b , such as fusion reaction, deep inelastic collision (DIC) and quasi-elasticcollision, which are similar to the nuclear heavy-ion collisions (HIC). For the system of Na6 (3D) + Na8, the reaction mechanism at b=9a0 is DIC, but when b is equal to 13a0, it corresponds to quasi-elastic collision. Further more the rotation processes during the collisions, are related to the collision energy and parameter. The larger collision energy is, the earlier relative rotation will occur, and the relaxation time becomes shorter and the relative rotation energy is much smaller. There exists maximal relative rotation energy which corresponding to b = 7a0. When b is smaller than 7a0, the rotation energy increases with b increasing, otherwise the energyd ecreases. And the maximal relative rotation energy is corresponding to DIC process. The maximal rotation energy can reach on etenth of total energy, which is much less than that in HIC.  相似文献   

18.
The dependence of the electron capture cross section on cluster size in proton-cluster collisions is investigated within two different theoretical models. At low collision velocities a strong increase in the cross section with cluster size is found, whereas the size-dependency of the cross section becomes less pronounced at higher velocities.  相似文献   

19.
The attachment of water molecules onto size selected protonated water clusters has been experimentally investigated. Absolute attachment cross sections are measured as a function of cluster size, collision energy, and initial cluster temperature. Although thermal evaporation is ruled out in our experiment, attachment cross sections become significantly smaller than hard sphere cross sections as the collision energy increases. This feature is attributed to a transition from adiabatic to nonadiabatic regime. It is shown to be due to a dynamical effect: as the collision duration becomes shorter than the typical time required for collision energy redistribution into clusters internal energy, the attachment probability is reduced. We relate this typical time to the period of the main surface vibrational mode excited by the collisions. This hypothesis is further supported by results obtained with deuterated water clusters.  相似文献   

20.
By means of molecular dynamics simulations based on realistic n-body potentials we investigate structural and dynamical features inherent to the energetic collision of a silver cluster (Ag19) on the Pd(100) substrate. Both the system and the impact energy (Ei = 95 eV) adopted have been chosen to parallel an experimental study of size selected Ag cluster deposition on Pd(100). Our results indicate that the experimental cross section obtained via thermal energy atom scattering at the same collision energy is well reproduced by the simulations.The modeling allows to rationalize the collision outcome in terms of defect production and cluster atoms implantation. The adsorbed structures have an heterogenous nature and are mostly two-dimensional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号