首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel characteristics of magnetic field and entropy generation in mixed convective flow of Carreau fluid towards a stretched surface are investigated.Buongiornio nanoliquid model consists of thermophoresis and Brownian movement aspects is opted for analysis.Energy expression is modeled subject to thermal radiation and viscous dissipation phenomenon.Concentration by zero mass flux condition is implemented.Consideration of chemical reaction and activation energy characterizes the mass transfer mechanism.Total entropy generation rate and Bejan number is formulated.The utilization of transformation variables reduces the PDEs into non-linear ODEs.The obtained nonlinear complex problems are computed numerically through Shooting scheme.The impact of involved variables like local Weissenberg number,magnetic parameter,thermal radiation parameter,Brownian motion parameter,thermophoresis parameter,buoyancy ratio parameter,mixed convection parameter,Prandtl parameter,Eckert number,Schmidt number,non-dimensional activation energy parameter,chemical reaction parameter,Brinkman number,dimensionless concentration ratio variable,diffusive variable and dimensionless temperature ratio variable on velocity,temperature,nanoparticles concentration,entropy generation,Bejan number,surface drag force and heat transfer rate are examined through graphs and tables.  相似文献   

2.
In this paper, Newtonian nanofluid flow is observed under the effects of the magnetic field, activation energy and motile microorganisms over an inclined stretchable cylinder. The magnificent aspects of nanoliquid are demonstrated by enduring the Brownian motion and thermophoresis diffusion features.Nonlinear higher order partial differential equations are transformed into first-order ordinary differential equations with suitable similarity variables. The attained sets of governing equations are then cracked by bvp4 c procedure in MATLAB mathematical software. The numerical and graphical outcomes of controlling parameters such as Prandtl number, mixed convection, activation energy, thermophoresis,Brownian parameter, Biot number, Lewis number, Peclet number and motile concentration parameter against the velocity, temperature, volumetric concentration and motile concentration of nanoparticles of the fluid are discussed. The velocity is enhanced with the growth valuation in mixed convection and decay by rising variation of buoyancy ratio parameter, magnetic parameter and bio-convective Rayleigh parameter. The evolution in motile microorganisms is due to the increasing values of microorganisms Biot number. The presented data can be helpful in enhancement of manufacturing processes, biomolecules, extrusion systems applications and energy production improvement.  相似文献   

3.
The flow, heat and mass transfer of water-based nanofluid are examined between two horizontal parallel plates in a rotating system. The effects of Brownian motion, thermophoresis, viscosity and Hall current parameters are considered. The governing partial differential equations are reduced to ordinary differential equations that are then solved numerically using the Runge–Kutta–Fehlberg method. Validation of numerical solution is achieved with an exact solution of primary velocity and found to be in good agreement. Results show that both surfaces experience opposite behavior regarding skin friction, Nusselt and Sherwood numbers in both primary and secondary flows. These physical quantities depend upon dimensionless parameters and numbers.  相似文献   

4.
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.  相似文献   

5.
An analysis has been carried out to study the effects of thermal-diffusion and diffusion-thermo on non-Darcian mixed convection heat and mass transfer of an incompressible, electrically conducting fluid over a stretching sheet embedded in a porous medium in the presence of an external magnetic field and non-uniform heat source/sink. Similarity transformations are used to convert highly non-linear partial differential equations into ordinary differential equations. Similarity equations are then solved numerically using shooting algorithm with Runge-Kutta-Fehlberg scheme over the entire range of physical parameters. The effects of various physical parameters on the dimensionless velocity, temperature and concentration profiles are depicted graphically. Present results are compared with previously published work on various special cases of the problem and the results are found to be in very good agreement. Numerical results for local skin-friction, local Nusselt number and local Sherwood number are tabulated for different physical parameters.  相似文献   

6.
The present study investigates a Casson fluid flow in the presence of free convection of combined heat and mass transfer toward an unsteady permeable stretching sheet with thermal radiation, viscous dissipation and chemical reaction. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations and then solved by an efficient Runge–Kutta–Fehlberg method. The dimensionless velocity is decreased by increasing values of the chemical reaction and magnetic parameter while fluid temperature is significantly reduced by increasing values of the Prandtl number. The heat transfer rate is reduced with increasing values of thermal radiation and magnetic parameters.  相似文献   

7.
The present work investigates the unsteady, imcompressible flow of a micropolar fluid between two orthogonally moving porous coaxial disks. The lower and upper disks are rotating with the same angular speed in counter directions. The flows are driven by the contraction and the rotation of the disks. An extension of the Von Kármán type similarity transformation is proposed and is applied to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. These differential equations with appropriate boundary conditions are responsible for the flow behavior between large but finite coaxial rotating disks. The analytical solutions are obtained by employing the homotopy analysis method. The effects of some various physical parameters like the expansion ratio, the rotational Reynolds number, the permeability Reynolds number, and micropolar parameters on the velocity fields are observed in graphs and discussed in detail.  相似文献   

8.
9.
We scrutinize the approximate analytical solutions by the optimal homotopy analysis method (OHAM) for the flow and mass transfer within the Marangoni boundary layer of power-law fluids over a disk with suction and injection in the present paper. Concentration distribution on the surface of a disk varies in a power-law form. The non-Newtonian fluid flow is due to the surface concentration gradient without considering gravity and buoyancy. According to the conservation of mass, momentum and concentration, the governing partial differential equations are established, and the appropriate generalized Kármán transformation is found to reduce them to the nonlinear ordinary differential equations. OHAM is used to access the approximate analytical solution. The influences of Marangoni the number, suction/injection parameters and power-law exponent on the flow and mass transfer are examined.  相似文献   

10.
The influence of mixed convection boundary layer flow of a viscoelastic fluid over an isothermal horizontal circular cylinder has been analyzed. The boundary layer equations governing the problem are reduced to dimensionless nonlinear partial differential equations and then solved numerically using Keller-box method. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against curvature parameter. Effects of mixed convection parameter and radiation-conduction parameter on skin friction coefficient and Nusselt number are illustrated through graphs and table. The boundary layer separation points along the surface of cylinder are also calculated with/without radiation, and a comparison is shown. The presence of radiation helps to reduce the skin friction coefficient in opposing flow case and enhances it for assisting flow case. The increase in value of radiation-conduction parameter helps increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids. The boundary layer separation delays due to thermal radiation.  相似文献   

11.
The candid intension of this article is to inspect the heat and mass transfer of a magnetohydrodynamic tangent hyperbolic nanofluid. The nanofluid flow has been assumed to be directed by a wedge on its way. In addition, the collective stimulus of the convective heating mode with thermal radiation is inspected. The governing set of PDEs is rendered into that of the coupled nonlinear ODEs. The resulting ordinary differential equations are then solved by the well known shooting technique for two different cases; the flow over a static wedge and flow over a stretching wedge. The impact of intricate physical parameters on the velocity, temperature and concentration profiles is analyzed graphically. It is noticed that the intensifying values of the generalized Biot number, Brownian motion parameter, thermophoresis parameter and Weissenberg number enhances the dimensionless temperature profile.  相似文献   

12.
The current study centralizes on unsteady free convection slip flow of Casson fluid past a vertical permeable plate with Hall current, radiative heat flux, and variable suction. The nonlinear convection is subjected to quartic order. Perturbation method is used to convert the non-linear coupled partial differential equation of the momentum and energy to a system of ordinary differential equations. The dimensionless governing equations are solved analytically for velocity and temperature profiles. The graphs are plotted for sundry parameters for variations in the distinct flow fields w.r.t distance from the plate. Variation in the skin friction for the axial and transverse cases are presented in the form of graphs for various parameters. It is observed that with the increase in the order of non-linear convection and value of radiation parameter, the velocity field increases in Casson fluid. The increase in heat absorption parameter and Prandtl number decreases the temperature profile and increase in radiative heat flux parameter increases the temperature profile.  相似文献   

13.
14.
The dynamical origin of large-scale flows in systems driven by concentrated Archimedean forces is considered. A two-dimensional model of plumes, such as those observed in thermal convection at large Rayleigh and Prandtl numbers, is introduced. From this model, we deduce the onset of mean flow as an instability of a convective state consisting of parallel vertical flow supported by buoyancy forces. The form of the linear equation governing the instability is derived and two modes of instability are discussed, one of which leads to the onset of steady Eulerian mean flow in the system. We are thus able to link the origin of mean flow precisely to the profiles of the unperturbed plumes. The form of the nonlinear partial differential equation governing the Eulerian mean flow, including nonlinear effects, is derived in one special case. The extension to three dimensions is outlined. (c) 2000 American Institute of Physics.  相似文献   

15.
K. H. Wu  C. Gau 《实验传热》2013,26(3):195-215
Thermosolutal convection flow and its effect on the heat and the mass transfer in a square enclosure is studied experimentally. Both thermal and solute diffusion are induced from the sides, and natural convection is initiated by the combined thermal and solutal buoyancies, which either augment or oppose to each other. The solute diffusion is initiated in an electrochemical system that uses copper sulfate-sulfuric acid solution as an electrolyte. Depending on the magnitude of buoyancy ratio, three different kinds of flow regimes and structures can occur, which lead to different distributions of concentration in the enclosure. The formation and growth of layered flow structure is attributed to the solutal boundary-layer flow that can intrude and accumulate along the horizontal wall. The nearly stagnant layer that occurs can reduce the heat transfer rate. The Nusselt numbers at different flow regimes are measured and correlated in terms of relevant nondimensional parameters. This suggests the correlation of Sherwood number in different ranges of buoyancy ratio. The visualization of flow structures and measurements of both heat and mass transfer allow better understanding of the complicated system.  相似文献   

16.
In this article,three-dimensional mixed convection flow over an exponentially stretching sheet is investigated.Energy equation is modelled in the presence of viscous dissipation and variable thermal conductivity.Temperature of the sheet is varying exponentially and is chosen in a form that facilitates the similarity transformations to obtain self-similar equations.Resulting nonlinear ordinary differential equations are solved numerically employing the Runge-Kutta shooting method.In order to check the accuracy of the method,these equations are also solved using bvp4c built-in routine in Matlab.Both solutions are in excellent agreement.The effects of physical parameters on the dimensionless velocity field and temperature are demonstrated through various graphs.The novelty of this analysis is the self-similar solution of the threedimensional boundary layer flow in the presence of mixed convection,viscous dissipation and variable thermal conductivity.  相似文献   

17.
Here thermal dependence conductivity and nonlinear convection features in third-grade liquid flow bounded by moving surface having varying thickness are formulated. Stagnation point flow is considered. Revised FourierFick relations and double stratification phenomena are utilized for modeling energy and concentration expressions. Mathematical model of considered physical problem is achieved by implementing the idea of boundary layer theory. The acquired partial differential system is transformed into ordinary ones by employing relevant variables. The homotopic scheme yield convergent solutions of governing nonlinear expressions. Graphs are constructed for distinct values of physical constraints to elaborate the heat/mass transportation mechanisms.  相似文献   

18.
Here thermal dependence conductivity and nonlinear convection features in third-grade liquid flow bounded by moving surface having varying thickness are formulated. Stagnation point flow is considered. Revised FourierFick relations and double stratification phenomena are utilized for modeling energy and concentration expressions.Mathematical model of considered physical problem is achieved by implementing the idea of boundary layer theory. The acquired partial differential system is transformed into ordinary ones by employing relevant variables. The homotopic scheme yield convergent solutions of governing nonlinear expressions. Graphs are constructed for distinct values of physical constraints to elaborate the heat/mass transportation mechanisms.  相似文献   

19.
Hybrid nanofluid has become one of the major interest topics among researchers nowadays due to its significant impact in myriad applications. This paper modeled and explored the properties of flow and heat transfer of mixed convection stagnation point flow for hybrid nanofluid (alumina-copper/water) on a vertical plate with slips and suction. By using the method of similarity transformation, the governing set of partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). These derived equations are then evaluated numerically by adopting the bvp4c function that is available in Matlab software. In the presence of slips together with the opposing flow of mixed convection, the local Nusselt number (heat transfer rate) can be augmented by increasing the solid volume fraction of copper. The surge of 0.5% of copper volume fraction can accelerate the heat transfer rate by approximately 1.3% in this present analysis within the specified value of slips, mixed convection, and suction. The stability analysis is conducted due to the existence of dual solutions and only the first solution is stable for practical application.  相似文献   

20.
The effects of a steady two-dimensional laminar MHD mixed convection flow and heat transfer against a heated vertical semi-infinite permeable surface in a porous medium are discussed. The coupled nonlinear partial differential equations describing the conservation of mass, momentum, and energy are solved by a perturbation technique. The results are presented to illustrate the influence of Hartmann number (M), Prandtl number (Pr), permeability parameter (K p ), suction/blowing parameter (f w ), heat generation/absorption coefficient (?), and mixed convection or buoyancy parameter (γ). The effects of different parameters on the velocity and temperature as well as the skin friction and wall heat transfer are discussed with the help of figures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号