首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate some new interesting solution structures of the(2+1)-dimensional bidirectional Sawada–Kotera(bSK) equation. We obtain soliton molecules by introducing velocity resonance. On the basis of soliton molecules, asymmetric solitons are obtained by changing the distance between two solitons of molecules. Based on the N-soliton solutions,several novel types of mixed solutions are generated, which include the mixed breather-soliton molecule solution by the module resonance of the wave number and partial velocity resonance,the mixed lump-soliton molecule solution obtained by partial velocity resonance and partial long wave limits, and the mixed solutions composed of soliton molecules(asymmetric solitons), lump waves, and breather waves. Some plots are presented to clearly illustrate the dynamic features of these solutions.  相似文献   

2.
Bo Ren 《理论物理通讯》2021,73(3):35003-27
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.  相似文献   

3.
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt (gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps, breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.  相似文献   

4.
In this paper, based on N-soliton solutions, we introduce a new constraint among parameters to find the resonance Y-type soliton solutions in (2+1)-dimensional integrable systems. Then, we take the (2+1)-dimensional Sawada–Kotera equation as an example to illustrate how to generate these resonance Y-type soliton solutions with this new constraint. Next, by the long wave limit method, velocity resonance and module resonance, we can obtain some new types of hybrid solutions of resonance Y-type solitons with line waves, breather waves, high-order lump waves respectively. Finally, we also study the dynamics of these interaction solutions and indicate mathematically that these interactions are elastic.  相似文献   

5.
In this paper, a modified version of the solution in form of a Gramian formula is employed to investigate a new type of multiple lump molecule solution of the Kadomtsev–Petviashvili I equation. The high-order multiple lump molecules consisting of M N-lump molecules are constructed by means of the Mth-order determinant and the non-homogeneous polynomial in the degree of 2N. The interaction solutions describing P line solitons radiating P of the M N-lump molecules are constructed. The dynamic behaviors of some specific solutions are analyzed through numerical simulation. All the results will enrich our understanding of the multiple lump waves of the Kadomtsev–Petviashvili I equation.  相似文献   

6.
In this paper, based on the Hirota bilinear method and symbolic computation approach, multiple-order rogue waves of (2+1)-dimensional Boussinesq type equation are constructed. The reduced bilinear form of the equation is deduced by the transformation of variables. Three kinds of rogue wave solutions are derived by means of bilinear equation. The maximum and minimum values of the first-order rogue wave solution are given at a specific moment. Furthermore, the second-order and third-order rogue waves are explicitly derived. The dynamic characteristics of three kinds of rogue wave solutions are shown by three-dimensional plot.  相似文献   

7.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

8.
雷军  马松华  方建平 《物理学报》2011,60(12):120507-120507
在符号计算软件 Maple 的帮助下,利用投射方程法和变量分离法,得到了(3+1)维 Jimbo-Miwa(JM)方程的新显式精确解. 根据得到的孤立波解,研究了 JM 方程新颖的局域激发. 关键词: 投射方程法 Jimbo-Miwa方程 精确解 局域激发  相似文献   

9.
For a one (2+1)-dimensional combined Kadomtsev-Petviashvili with its hierarchy equation, the missing D'Alembert type solution is derived first through the traveling wave transformation which contains several special kink molecule structures. Further, after introducing the Bäcklund transformation and an auxiliary variable, the N-soliton solution which contains some soliton molecules for this equation, is presented through its Hirota bilinear form. The concrete molecules including line solitons, breathers and a lump as well as several interactions of their hybrid are shown with the aid of special conditions and parameters. All these dynamical features are demonstrated through the different figures.  相似文献   

10.
This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution's visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.  相似文献   

11.
The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB) equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded param...  相似文献   

12.
The lump solution is one of the exact solutions of the nonlinear evolution equation. In this paper, we study the lump solution and lump-type solutions of (2+1)-dimensional dissipative Ablowitz–Kaup–Newell–Segure (AKNS) equation by the Hirota bilinear method and test function method. With the help of Maple, we draw three-dimensional plots of the lump solution and lump-type solutions, and by observing the plots, we analyze the dynamic behavior of the (2+1)-dimensional dissipative AKNS equation. We find that the interaction solutions come in a variety of interesting forms.  相似文献   

13.
马红彩  葛东杰  于耀东 《中国物理 B》2008,17(12):4344-4353
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).  相似文献   

14.
This study successfully reveals the dark, singular solitons, periodic wave and singular periodic wave solutions of the (1+1)-dimensional coupled nonlinear Schrödinger equation by using the extended rational sine-cosine and rational sinh-cosh methods. The modulation instability analysis of the governing model is presented. By using the suitable values of the parameters involved, the 2-, 3-dimensional and the contour graphs of some of the reported solutions are plotted.  相似文献   

15.
杨征  马松华  方建平 《物理学报》2011,60(4):40508-040508
在符号计算软件Maple的帮助下,利用改进的Riccati方程映射法得到了(2+1)维Zakharov-Kuznetsov方程(ZK)的新显式精确解. 根据得到的解,研究了ZK方程的特殊孤子结构. 关键词: 改进的Riccati方程映射法 Zakharov-Kuznetsov方程 精确解 孤子结构  相似文献   

16.
In this paper,we give the general interaction solution to the(3+1)-dimensional Jimbo–Miwa equation.The general interaction solution contains the classical interaction solution.As an example,by using the generalized bilinear method and symbolic computation by using Maple software,novel interaction solutions under certain constraints of the(3+1)-dimensional Jimbo–Miwa equation are obtained.Via three-dimensional plots,contour plots and density plots with the help of Maple,the physical characteristics and structures of these waves are described very well.These solutions greatly enrich the exact solutions to the(3+1)-dimensional Jimbo–Miwa equation found in the existing literature.  相似文献   

17.
The(3+1)-dimensional Burgers equation, which describes nonlinear waves in turbulence and the interface dynamics,is considered. Two types of semi-rational solutions, namely, the lump–kink solution and the lump–two kinks solution, are constructed from the quadratic function ansatz. Some interesting features of interactions between lumps and other solitons are revealed analytically and shown graphically, such as fusion and fission processes.  相似文献   

18.
The (1+2)-dimensional chiral nonlinear Schrödinger equation (2D-CNLSE) as a nonlinear evolution equation is considered and studied in a detailed manner. To this end, a complex transform is firstly adopted to arrive at the real and imaginary parts of the model, and then, the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE. The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions.  相似文献   

19.
20.
In this article, we consider the(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP)equation in fluids. We show that a variety of nonlinear localized waves can be produced by the breath wave of the GKP model, such as the(oscillating-) W-and M-shaped waves, rational W-shaped waves, multi-peak solitary waves,(quasi-) Bell-shaped and W-shaped waves and(quasi-) periodic waves. Based on the characteristic line analysis and nonlinear superposition principle, we give the transition conditions analytically. We find the interesting dynamic behavior of the converted nonlinear waves, which is known as the time-varying feature. We further offer explanations for such phenomenon. We then discuss the classification of the converted solutions. We finally investigate the interactions of the converted waves including the semi-elastic collision, perfectly elastic collision, inelastic collision and one-off collision. And the mechanisms of the collisions are analyzed in detail. The results could enrich the dynamic features of the high-dimensional nonlinear waves in fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号