首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Le Vey  G. 《Numerical Algorithms》1998,19(1-4):127-145
It has been shown [17,18,21] that the notion of index for DAEs (Differential Algebraic Equations), or more generally implicit differential equations, could be interpreted in the framework of the formal theory of PDEs. Such an approach has at least two decisive advantages: on the one hand, its definition is not restricted to a “state-space” formulation (order one systems), so that it may be computed on “natural” model equations coming from physics (which can be, for example, second or fourth order in mechanics, second order in electricity, etc.) and there is no need to destroy this natural way through a first order rewriting. On the other hand, this formal framework allows for a straightforward generalization of the index to the case of PDEs (either “ordinary” or “algebraic”). In the present work, we analyze several notions of index that appeared in the literature and give a simple interpretation of each of them in the same general framework and exhibit the links they have with each other, from the formal point of view. Namely, we shall revisit the notions of differential, perturbation, local, global indices and try to give some clarification on the solvability of DAEs, with examples on time-varying implicit linear DAEs. No algorithmic results will be given here (see [34,35] for computational issues) but it has to be said that the complexity of computing the index, whatever approach is taken, is that of differential elimination, which makes it a difficult problem. We show that in fact one essential concept for our approach is that of formal integrability for usual DAEs and that of involution for PDEs. We concentrate here on the first, for the sake of simplicity. Last, because of the huge amount of work on DAEs in the past two decades, we shall mainly mention the most recent results. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Summary. In the last few years there has been considerable research on numerical methods for differential algebraic equations (DAEs) where is identically singular. The index provides one measure of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has dealt with DAEs with indices no larger than three. Even in this case, the systems were often assumed to have a special structure. Recently a numerical method was proposed that could, in principle, be used to integrate general unstructured higher index solvable DAEs. However, that method did not preserve constraints. This paper will discuss a modification of that approach which can be used to design constraint preserving integrators for general nonlinear higher index DAEs. Received August 25, 1993 / Revised version received April 7, 1994  相似文献   

3.
Falk Ebert  Simone Bächle 《PAMM》2006,6(1):731-732
The numerical simulation of very large scale integrated circuits is an important tool in the development of new industrial circuits. In the course of the last years, this topic has received increasing attention. Common modeling approaches for circuits lead to differential-algebraic systems (DAEs). In circuit simulation, these DAEs are known to have index 2, given some topological properties of the network. This higher index leads to several undesirable effects in the numerical solution of the DAEs. Recent approaches try to lower the index of DAEs to improve the numerical behaviour. These methods usually involve costly algebraic transformations of the equations. Especially, for large scale circuit equations, these transformations become too costly to be efficient. We will present methods that change the topology of the network itself, while replacing certain elements in oder to obtain a network that leads to a DAE of index 1, while not altering the analytical solution of the DAE. This procedure can be performed prior to the actual numerical simulation. The decreasing of the index usually leads to significantly improved numerical behaviour. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The computation of consistent initial values is one of the basic problems when solving initial or boundary value problems of DAEs. For a given DAE it is, in fact, not obvious how to formulate the initial conditions that lead to a uniquely solvable IVP. The existing algorithms for the solution of this problem are either designed for fixed index, or they require a special structure of the DAE or they need more than the given data (e.g. additional differentiations). In this paper, combining the results concerning the solvability of DAEs with properly stated leading terms with an appropriate method for the approximation of the derivative, we propose an algorithm that provides the necessary data to formulate the initial conditions and which works at least for nonlinear DAEs up to index 3. Illustrative examples are given.   相似文献   

5.
S. Bächle  F. Ebert 《PAMM》2006,6(1):727-728
Transient analysis in industrial chip design leads to very large systems of differential-algebraic equations (DAEs). The numerical solution of these DAEs strongly depends on the so called index of the DAE. In general, the higher the index of the DAE is, the more sensitive the numerical solution will be to errors in the computation. So, it is advisable to use mathematical models with small index or to reduce the index. This paper presents an index reduction method that uses information based on the topology of the circuit. In addition, we show that the presented method retains structural properties of the DAE. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The idea of the index of a differential algebraic equation (DAE) (or implicit differential equation) has played a fundamental role in both the analysis of DAEs and the development of numerical algorithms for DAEs. DAEs frequently arise as partial discretizations of partial differential equations (PDEs). In order to relate properties of the PDE to those of the resulting DAE it is necessary to have a concept of the index of a possibly constrained PDE. Using the finite dimensional theory as motivation, this paper will examine what one appropriate analogue is for infinite dimensional systems. A general definition approach will be given motivated by the desire to consider numerical methods. Specific examples illustrating several kinds of behavior will be considered in some detail. It is seen that our definition differs from purely algebraic definitions. Numerical solutions, and simulation difficulties, can be misinterpreted if this index information is missing.  相似文献   

7.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of problems which can be transformed to index one control problems. For these problems we show in the accompanying paper that, if the solutions to the adjoint equations are well–defined, then the first-order approximations to the functionals defining the problem can be expressed in terms of the adjoint variables. In this paper we show that the solutions to the adjoint equations are essentially bounded measurable functions. Then, based on the first order approximations, we derive the necessary optimality conditions for the considered class of control problems. These conditions do not require the transformation of the DAEs to index-one system; however, higher-index DAEs and their associated adjoint equations have to be solved.  相似文献   

8.
1Intr0ducti0nDifferential-algebraicequations(DAEs)areveryusefu1inwidefields(cf.[1]).Bydifferential-algebraicequations,wemeanthoseequati0nswhosepartsof"derivative"cann0tbeexpressedexplicitly.Forexample,weconsidertheimplicitdifferentialequationwithmappingFsm00thssufficient1y.Itisusuallyreferredt0adifferential-algebraicequation(DAE)whentherank0fD.F(t,x,p)islessthann,wheretheremightbesomepurea1gebraic,whichwecallc0nstraintequations.TheDAEs,inparticular,theexistenceanduniquenessofitssolutions…  相似文献   

9.
10.
Several indices, such as the Blumenthal–Getoor indices, have been defined to help describe various sample path properties for Lévy processes. These indices can be used to obtain bounds on the Hausdorff dimension of the range, graph, and zero set for a special subclass of Lévy processes. However, there has yet to be found an index that precisely determines the dimension of the graph for a general Lévy process. While surveying many of these results with a focus on general Lévy processes, some of the results are generalized or improved. The culmination of this synthesis is a new index that specifies the dimension of the graph of a general multidimensional Lévy process.  相似文献   

11.
Lena Wunderlich 《PAMM》2006,6(1):775-776
We consider the numerical treatment of systems of second order differential-algebraic equations (DAEs). The classical approach of transforming a second order system to first order by introducing new variables can lead to difficulties such as an increase in the index or the loss of structure. We show how we can compute an equivalent strangeness-free second order system using the derivative array approach and we present Runge-Kutta methods for the direct numerical solution of second order DAEs. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

14.
Campbell  S.L.  Hollenbeck  R.  Yeomans  K.  Zhong  Y. 《Numerical Algorithms》1998,19(1-4):73-83
Differential-algebraic equations (DAEs) arise in many ways in many types of problems. In this expository paper we discuss a variety of situations where we have found mixed symbolic-numerical calculations to be essential. The paper is designed to both familiarize the reader with several fundamental DAE ideas and to present some applications. The situations discussed include the analysis of DAEs, the solution of DAEs, and applications which include DAEs. Both successes and challenges will be presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Ralf Siebert  Peter Betsch 《PAMM》2008,8(1):10139-10140
Unit–quaternions (or Euler parameter) are known to be well–suited for the singularity–free parametrization of finite rotations. Despite of this advantage, unit quaternions were rarely used to formulate the equations of motion (exceptions are the works by Nikravesh [1] and Haug [2]). This might be related to the fact, that the unit–quaternions are redundant, which requires the use of algebraic constraints in the equations of motion. Nowadays robust energy consistent integrators are available for the numerical solution of these differential–algebraic equations (DAEs). In the present work a mechanical integrator for the quaternions will be derived. This will be done by a size–reduction from the director formulation of the equations of motion, which also has the form of DAEs. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
For nonlinear DAEs, we can hardly make a reasonable statement unless structural assumptions are given. Many results are restricted to explicit DAEs, often in Hessenberg form of order up to three. For the DAEs resulting from circuit simulation, different beneficial structures have been found and exploited for the computation of consistent initial values. In this paper, a class of DAEs in nonlinear Hessenberg form of arbitrary high order is defined and analyzed with regard to consistent initialization. For this class of DAEs, the hidden constraints can be systematically described and the consistent initialization can be determined step-by-step solving linear subproblems, an approach hitherto used for the DAEs resulting from circuit simulation. Finally, it is shown that the DAEs resulting from mechanical systems fulfill the defined structural assumptions. The algorithm is illustrated by several examples.  相似文献   

17.
1 IntroductionNormal differential-algebraic equatiOns (DAEs) are siugular ordiuary differe11tial equations(ODEs)f(x,(t),x(f),f) = 0, (1.1)wllere the partial Jacobian f;(y, x, f) E L(n") is everywliere singular but has constant rank.Such systelns are of special interest in view of various applicatiOns, e.g. electrical networks,constrailled lllecl1anica1 systenis of rigid bodies, coutrol theory, singular perturbatio11 and dis-cretization of partia1 differential equations, etc. (cf [1,2,3]).I…  相似文献   

18.
We analyze Runge-Kutta discretizations applied to nonautonomous index 2 differential algebraic equations (DAEs) in semi-explicit form. It is shown that for half-explicit and projected Runge-Kutta methods there is an attractive invariant manifold for the discrete system which is close to the invariant manifold of the DAE. The proof combines reduction techniques to autonomou index 2 differential algebraic equations with some invariant manifold results of Schropp [9]. The results support the favourable behavior of these Runge-Kutta methods applied to index 2 DAEs for t = 0.  相似文献   

19.
In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]′+B(t)x(t)=q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.  相似文献   

20.
For a family of operator equations of the first kind with nonlinear nonmonotone hemicontinuous operators in a reflexive Banach space, we prove a theorem on the solvability and a uniform estimate of the solution in the norm of the space. Our approach is related to the method of semimonotone operators but has some essential differences from the latter. In a specific example, we show that our theorem can be used to prove the total (with respect to the set of admissible controls) preservation of solvability for distributed control systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号