首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractional Derivative Viscoelasticity at Large Deformations   总被引:1,自引:0,他引:1  
A time domain viscoelastic model for large three-dimensional responses underisothermal conditions is presented. Internal variables with fractional orderevolution equations are used to model the time dependent part of the response. By using fractional order rate laws, the characteristics of the timedependency of many polymeric materials can be described using relatively fewparameters. Moreover, here we take into account that polymeric materials are often used in applications where the small deformations approximation does nothold (e.g., suspensions, vibration isolators and rubber bushings). A numerical algorithm for the constitutive response is developed and implemented into a finite element code forstructural dynamics. The algorithm calculates the fractional derivatives by means of the Grünwald–Lubich approach.Analytical and numerical calculations of the constitutive response in the nonlinearregime are presented and compared. The dynamicstructural response of a viscoelastic bar as well as the quasi-static response of athick walled tube are computed, including both geometrically and materiallynonlinear effects. Moreover, it isshown that by applying relatively small load magnitudes, the responses ofthe linear viscoelastic model are recovered.  相似文献   

2.
3.
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.  相似文献   

4.
The periodic motions of the fractional order and/or delayed nonlinear systems are investigated in the frequency domain using a harmonic balance method with the analytical gradients of the nonlinear quality constraints and the sensitivity information of the Fourier coefficients can also obtained. The properties of fractional order derivatives and trigonometric functions are utilized to construct the fractional order derivatives, delayed and product operational matrices. The operational matrices are used to derive the analytical formulae of nonlinear systems of algebraic equations. The stability of periodic solutions for the delayed nonlinear systems is identified by an eigenvalue analysis of quasi-polynomials characteristic equations. Sensitivity analysis is performed to study the influence of the structural parameters on the system responses. Finally, three numerical examples are presented to illustrate the validity and feasibility of the developed method. It is concluded that the proposed methodology has the potential to facilitate highly efficient optimization, as well as sensitivity and uncertainty analysis of nonlinear systems with fractional derivatives and/or time delayed.  相似文献   

5.
A four-parameter Maxwell model is formulated with fractional derivatives of different orders of the stress and strain using the Riemann-Liouville definition. This model is used to determine the relaxation and retardation functions. The relaxation function was found in the time domain with the help of a power law series; a direct solution was used in the Laplace domain. The solution can be presented as a product of a power law term and the Mittag-Leffler function. The retardation function is determined via Laplace transformation and is solely a power law type.The investigation of the relaxation function shows that it is strongly monotonic. This explains why the model with fractional derivatives is consistent with thermodynamic principles.This type of rheological constitutive equation shows fluid behavior only in the case of a fractional derivative of the stress and a first order derivative of the strain. In all other cases the viscosity does not reach a stationary value.In a comparison with other relaxation functions like the exponential function or the Kohlrausch-Williams-Watts function, the investigated model has no terminal relaxation time. The time parameter of the fractional Maxwell model is determined by the intersection point of the short- and long-rime asymptotes of the relaxation function.  相似文献   

6.
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William–Landel–Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.  相似文献   

7.
This paper presents finite element (FE) formulation of the viscoelastic materials described by fractional constitutive law. The time-domain three-dimensional constitutive equation is constructed. The FE equations are set up by equations are solved by numerical integration method. The numerical algorithm developed by the authors for Liouville-Riemann's fractional derivative was adopted to formulate FE procedures and extended to solve the more general case of the hereditary integration. The numerical examples were given to show the correctness and effectiveness of the integration algorithm. The project supported by the Ministry of Education of China for the returned overseas Chinese scholars  相似文献   

8.
壳体力学已于上世纪由多位专家发展成熟,其中简支柱壳挠曲问题采用改进莱维解法的三角级数法解出,但是其解法复杂,手算难以完成.为讨论其结果的精确性,通过编写运行基于MATLAB的运算程序导出实例化解析解,与基于力学基本理论的推想假设对比,再引入有限元计算结果进行比较研究.最终发现,理论解析解应力和位移具有分布形式大致准确性,但仍存在不容忽视的细节与局部性问题.研究表明,理论解法工程意义有限,结果尚需改进.  相似文献   

9.
在分数导数粘弹性本构模型的基础上综合考虑桩周土和桩芯土的平衡方程和几何方程建立了桩周土和桩芯土的竖向运动的控制方程.在频率域内利用分离变量法和分数导数的性质求解了桩周土和桩芯土竖向振动控制方程.考虑管桩与桩周土、管桩与桩芯土的边界连续性条件以及三角函数的正交性得到了分数导数粘弹性模型描述的土中管桩的竖向振动,通过数值分析研究了管桩和土体模型参数和几何参数对管桩的桩顶复刚度的影响规律.结果显示:桩芯土本构模型的分数导数的阶数对管桩竖向振动的影响较桩周土本构模型的阶数要小,且与频率有一定关系;桩芯土与桩周土的模型参数比τ1 和τ2 对等效阻尼的影响较对刚度因子的影响要大;管桩桩周和桩芯的直径比d 越小,管桩复刚度的实部和虚部就越大;土体力学性能对管桩竖向振动的影响要比管桩桩身力学性能的影响小.  相似文献   

10.
The article describes the unsteady motion of viscoelastic fluid for a Maxwell model with fractional derivatives. The flow is produced by cylinder, considering time dependent quadratic shear stress ft2 on Maxwell fluid with fractional derivatives. The fractional calculus approach is used in the constitutive relationship of Maxwell model. By applying Laplace transform with respect to time t and modified Bessel functions, semianalytical solutions for velocity function and tangential shear stress are obtained. The obtained semianalytical results are presented in transform domain, satisfy both initial and boundary conditions. Our solutions particularized to Newtonian and Maxwell fluids having typical derivatives. The inverse Laplace transform has been calculated numerically. The numerical results for velocity function are shown in Table by using MATLAB program and compared them with two other algorithms in order to provide validation of obtained results. The influence of fractional parameters and material constants on the velocity field and tangential stress is analyzed by graphs.  相似文献   

11.
Considered are systems of single-mass oscillators with different fractional damping behaviour. Similar to the classical model, where the damping terms are represented by first derivatives, the eigensystem can be used to decompose the fractional system in frequency domain, if mass, stiffness and damping matrices are linearly dependent. The solution appears as a linear combination of single-mass oscillators. This is true even in the general case such that stability and causality are insured by the same argumentation as used in the linear dependent case.  相似文献   

12.
Considered are systems of single-mass oscillators with different fractional damping behaviour. Similar to the classical model, where the damping terms are represented by first derivatives, the eigensystem can be used to decompose the fractional system in frequency domain, if mass, stiffness and damping matrices are linearly dependent. The solution appears as a linear combination of single-mass oscillators. This is true even in the general case such that stability and causality are insured by the same argumentation as used in the linear dependent case.  相似文献   

13.
An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D) viscoelastic media. The fractional Kelvin-Zener constitutive model is used to describe the time-dependent behavior of viscoelastic materials. Within the framework of symplectic elasticity, the governing equations in the Hamiltonian form for the frequency domain(s-domain) can be directly and rigorously calculated. In the s-domain, the analytical solutions of the displacement ...  相似文献   

14.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations. Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffier function. The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.  相似文献   

15.
A fractional derivative model of linear viscoelasticity based on the decomposition of the displacement field into an anelastic part and elastic part is developed. The evolution equation for the anelastic part is then a differential equation of fractional order in time. By using a fractional order evolution equation for the anelastic strain the present model becomes very flexible for describing the weak frequency dependence of damping characteristics. To illustrate the modeling capability, the model parameters are fit to available frequency domain data for a high damping polymer. By studying the relaxation modulus and the relaxation spectrum the material parameters of the present viscoelastic model are given physical meaning. The use of this viscoelastic model in structural modeling is discussed and the corresponding finite element equations are outlined, including the treatment of boundary conditions. The anelastic displacement field is mathematically coupled to the total displacement field through a convolution integral with a kernel of Mittag–Leffler function type. Finally a time step algorithm for solving the finite element equations are developed and some numerical examples are presented.  相似文献   

16.
A fundamental problem on the constitutive equation with fractional derivatives for the generalized upper convected Maxwell model (UCM) is studied. The existing investigations on the constitutive equation are reviewed and their limitations or deficiencies are highlighted. By utilizing the convected coordinates approach, a mathematically rigorous constitutive equation with fractional derivatives for the generalized UCM model is proposed, which has an explicit expression for the stress tensor. This model can be reduced to the linear generalized Maxwell model with fractional derivatives, the UCM model and some other existing models. In addition, the rheological properties of this proposed model in the start-up of simple shear and elongation flows are investigated. It is shown that this generalized UCM model can describe the various stress evolution processes and the strain hardening effect of the viscoelastic fluids.  相似文献   

17.
For modeling the constitutive properties of viscoelastic solids in the context of small deformations, the so-called three-parameter solid is often used. The differential equation governing the model response may be derived in a thermodynamically consistent way considering linear spring-dashpot elements. The main problem in generalizing constitutive models from small to finite deformations is to extend the theory in a thermodynamically consistent way, so that the second law of thermodynamics remains satisfied in every admissible process. This paper concerns with the formulation and constitutive equations of finite strain viscoelastic material using multiplicative decomposition in a thermodynamically consistent manner. Based on the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in an FE code. Subsequently, the code is used to predict the response of elastomer bushings. The finite element analysis predicts displacements and rotations at the relaxed state reasonably well. The response to coupled radial and torsional deformations is also simulated.  相似文献   

18.
In this paper, a fractional 3-dimensional (3-D) 4-wing quadratic autonomous system (Qi system) is analyzed. Time domain approximation method (Grunwald–Letnikov method) and frequency domain approximation method are used together to analyze the behavior of this fractional order chaotic system. It is found that the decreasing of the system order has great effect on the dynamics of this nonlinear system. The fractional Qi system can exhibit chaos when the total order less than 3, although the regular one always shows periodic orbits in the same range of parameters. In some fractional order, the 4 wings are decayed to a scroll using the frequency domain approximation method which is different from the result using time domain approximation method. A surprising finding is that the phase diagrams display a character of local self-similar in the 4-wing attractors of this fractional Qi system using the frequency approximation method even though the number and the characteristics of equilibria are not changed. The frequency spectrums show that there is some shrinking tendency of the bandwidth with the falling of the system states order. However, the change of fractional order has little effect on the bandwidth of frequency spectrum using the time domain approximation method. According to the bifurcation analysis, the fractional order Qi system attractors start from sink, then period bifurcation to some simple periodic orbits, and chaotic attractors, finally escape from chaotic attractor to periodic orbits with the increasing of fractional order α in the interval [0.8,1]. The simulation results revealed that the time domain approximation method is more accurate and reliable than the frequency domain approximation method.  相似文献   

19.
GAUL  L.  SCHANZ  M. 《Meccanica》1997,32(3):171-178
Mixed boundary value problems of solid mechanics are treated by numericalsolutions of Boundary Integral Equations (BIE) in time domain with theBoundary Element Method (BEM) thus reducing the spatial problem dimensionby one. Viscoelastic constitutive behaviour is implemented by means of aLaplace transform technique based on an elastic--viscoelasticcorrespondence principle. The concept of fractional differintegrationgeneralizes conventional constitutive equations and provides improvedcurve fitting of measured material response with fewer parameters. As theimplementation of viscoelasticity is provided in each time step in theLaplace domain, efficient algorithms for the inverse transformation intime domain are needed. This is why the performance of adapted algorithmsby Talbot, Durbin and Crump are compared. The impact responseof a base plate bonded on a viscoelastic soil halfspace is discussed as anumerical example. Viscous forces increase the velocities of surface wavepropagation and cause attenuation in addition to the so called geometricaldamping by radiation.  相似文献   

20.
Agrawal  Om P. 《Nonlinear dynamics》2002,29(1-4):145-155
A general solution is given for a fractional diffusion-wave equation defined in a bounded space domain. The fractional time derivative is described in the Caputo sense. The finite sine transform technique is used to convert a fractional differential equation from a space domain to a wavenumber domain. Laplace transform is used to reduce the resulting equation to an ordinary algebraic equation. Inverse Laplace and inverse finite sine transforms are used to obtain the desired solutions. The response expressions are written in terms of the Mittag–Leffler functions. For the first and the second derivative terms, these expressions reduce to the ordinary diffusion and wave solutions. Two examples are presented to show the application of the present technique. Results show that for fractional time derivatives of order 1/2 and 3/2, the system exhibits, respectively, slow diffusion and mixed diffusion-wave behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号