首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We present a theoretical study on a series of novel organometallic sandwich molecular wires (SMWs), which are constructed with alternating iron atoms and cyclopentadienyl (Cp) rings, using DFT and nonequilibrium Green's function techniques. It is found that that the SMWs are stable, flexible structures having half-metallic (HM) properties with 100% negative spin polarization near the Fermi level in the ground state. Some SMWs of finite size show a nearly perfect spin filter effect (SFE) when coupled between ferromagnetic electrodes. Moreover, their I-V curves exhibit negative differential resistance (NDR), which is essential for certain electronic applications. The SMWs are the first linear molecules with HM, high SFE, and NDR and can be easily synthesized. In addition, we also analyze the underlying mechanisms via the transmission spectra and spin-dependent calculations. These findings strongly suggest that the SMWs are promising materials for application in molecular electronics.  相似文献   

2.
The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules.  相似文献   

3.
We discuss several proposed explanations for the switching and negative differential resistance (NDR) behavior seen in some molecular junctions. Several theoretical models are discussed, and we present results of electronic structure calculations on a series of substituted oligo(phenylene ethynylene) molecules. It is shown that a previously proposed polaron model is successful in predicting NDR behavior, and the model is elaborated with image charge effects and parameters from electronic structure calculations. This model now incorporates substituent effects and includes the effects of conformational change, charging, and image charge stabilization.  相似文献   

4.
We investigate the electronic transport properties for a molecular device model constructed by a phenylene ethynylene oligomer molecular with different side groups embedding in a carbon chain between two graphene electrodes. Using the first-principles method, the unusual dual conductance, negative differential resistance (NDR) behavior with large peak to valley ratio, and obvious rectifying performance are numerically observed in such proposed molecular device. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals (MOs) as well as transmission coefficients under various external voltage biases gives an inside view of the observed results, which suggests that the dual conductance behavior and rectifying performance are due to the asymmetry distribution of the frontier MOs as well as the corresponding coupling between the molecule and electrodes. But the NDR behavior comes from the conduction orbital being suppressed at certain bias. Interestingly, the conduction properties can be tuned by introducing side groups to the molecule and the rectification as well as the NDR behavior (peak to valley ratio) can be improved by adding different side groups in the device model.  相似文献   

5.
We have conducted a theoretical study on the electronic transport behaviour of two molecular diodes connected in series. The single diode is composed of o-nitrotoluene and o-aminotoluene connecting via a σ-bridge, and the tandem diode is two single diodes connecting via a π-bridge. It was found that the rectification ratio was greatly improved due to the electronic coupling in the tandem diode. The rectification ratio of the tandem molecular diode can be 20 times higher than that of the single diode, which is quite different from a traditional diode. In addition, we also found that the high rectification ratio correlates with the intramolecular coupling of the tandem system. When long conjugated wires are employed in two single diodes, the rectification ratio is reduced.  相似文献   

6.
This paper explores charge transport at the single molecule level. The conductive properties of both small organic molecules and conjugated polymers (molecular wires) are considered. In particular, the reasons for the transition from fully coherent to incoherent charge transport and the approaches that can be taken to describe this transition are addressed in some detail. The effects of molecular orbital symmetry, quantum interference, static disorder and molecular vibrations on charge transport are discussed. All of these effects must be taken into account (and may be used in a functional way) in the design of molecular electronic devices. An overview of the theoretical models employed when studying charge transport in small organic molecules and molecular wires is presented.  相似文献   

7.
We have explored the electronic transport properties of porphyrin-ethyne-benzene conjugates using an ab initio method. The results indicate that these ethyne-bridged phenyl porphyrin molecules can be used as candidates for molecular switching devices. The coplanar conformation of phenyl and porphyrin moieties allows a far larger current than the perpendicular conformation due to the near vanishing overlap of the frontier molecular orbitals (π channels) in the porphyrin and phenyl parts in the latter. Higher current ratios of ON/OFF states can be obtained if amino or nitro substituent is placed at the position meta to the bridge connecting the π systems of the molecule. The substituent group affects the electronic state energy of the entire molecule in coplanar conformation, while only affecting the local part in perpendicular conformation. More complex ethyne-bridged diphenyl porphyrin molecules are found to yield more complex and interesting switching effects. Our results suggest that such molecular wires composed of appropriate π-conjugated molecules, can generally display perfect switching function and the efficiency can be tuned flexibly by adding certain substituent groups to the conjugates.  相似文献   

8.
Molecular wire formation from viologen assemblies   总被引:2,自引:0,他引:2  
The adsorption behavior of viologen alpha,omega-dithiols (viologen dithiols) on gold has been investigated. At short exposures, a low-coverage phase consisting of flat-lying molecules has been determined by STM and IR spectroscopy. In contrast, multilayer films are formed after long adsorption times. Single molecular wires could be formed between a gold STM tip and a surface with a low coverage of the adsorbed dithiols, and their electrical behavior was investigated. Molecular conductivity was determined either by the repeated measurement of I(s) curves or by recording I-V curves for different tip-sample separations. These methods concurred in producing a value of (0.5 +/- 0.1) nS for the single-molecule conductivity of the alpha,omega-viologen dithiol molecule HS-6V6-SH. The high conductivity of HS-6V6-SH, as compared to that of HS-C12-SH, may be related to the low-lying LUMO, which provides a barrier indentation for electron transport in a two-step electron-transfer mechanism.  相似文献   

9.
We show that the conductivity of hybrid vanadium bronzes—mixed-valence organic–inorganic vanadium oxides—can be tuned over six orders of magnitude through judicious choice of molecular component. By systematically varying the steric profile, charge density, and propensity to hydrogen bond across a series of eight diammonium-based molecules, we engender multiple distinct motifs of V−O connectivity within the two-dimensional vanadium oxide layers of a family of bulk crystalline hybrid materials. A combination of single-crystal and powder X-ray diffraction analysis, variable-temperature electrical transport measurements, and a range of spectroscopic methods, including UV/Visible diffuse reflectance, X-ray photoelectron, and electron paramagnetic resonance are employed to probe how vanadium oxide layer topology correlates with electron localization. Specifically, alkylammonium molecules yield hybrids featuring more corrugated layers that contain V−O tetrahedra as well as a higher ratio of corner-sharing to edge-sharing polyhedra and that exhibit highly localized electronic behavior, while alkyl bipyridinium molecules yield more regular layers with polyhedral edge-sharing that show substantially delocalized electronic behavior. This work allows for the development of design principles based on structure–property relationships and brings the charge transport capabilities of hybrid vanadium bronzes to more technologically relevant levels.  相似文献   

10.
Facile electron transfer in molecules with one dimension greatly exceeding the other two is essential in the development of new molecular electronic devices as these molecules can serve as so-called molecular wires. In this communication the electrochemical behavior of a series of molecules with multiple extended viologen moieties has been studied. We show that the electron transfer in the shortest wire is due to reduction of two identical communicating pyridinium moieties leading to a full charge delocalization, whereas the electron transfer in molecules with n≥ 2 is due to reduction of initially non-communicating centers. This was confirmed by digital simulation of cyclic voltammograms. All studied molecules accept reversibly at least four and up to ten electrons without any long-term chemical changes, which is a prerequisite for their future application. Chemical stability of these molecules after multiple electron transfer was confirmed by in situ UV-Vis spectroelectrochemical detection.  相似文献   

11.
The electrical properties of self-assembled monolayers (SAMs) on metal surfaces have been explored for a series of molecules to address the relation between the behavior of a molecule and its structure. We probed interfacial electron transfer processes, particularly those involving unoccupied states, of SAMs of thiolates or arylates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. The i-V curves of hexadecanethiol in the low bias regime were symmetric around 0 V and the current increased exponentially with V at high bias voltage. Different than hexadecanethiol, reversible peak-shaped i-V characteristics were obtained for most of the nitro-based oligo(phenylene ethynylene) SAMs studied here, indicating that part of the conduction mechanism of these junctions involved resonance tunneling. These reversible peaked i-V curves, often described as a negative differential resistance (NDR) effect of the junction, can be used to define a threshold tip bias, V(TH), for resonant conduction. We also found that for all of the SAMs studied here, the current decreased with increasing distance, d, between tip and substrate. The attenuation factor beta of hexadecanethiol was high, ranging from 1.3 to 1.4 A(-1), and was nearly independent of the tip bias. The beta-values for nitro-based molecules were low and depended strongly on the tip bias, ranging from 0.15 A(-1) for tetranitro oligo(phenylene ethynylene) thiol, VII, to 0.50 A(-1) for dinitro oligo(phenylene) thiol, VI, at a -3.0 V tip bias. Both the V(TH) and beta values of these nitro-based SAMs were also strongly dependent on the structures of the molecules, e.g. the number of electroactive substituent groups on the central benzene, the molecular wire backbone, the anchoring linkage, and the headgroup. We also observed charge storage on nitro-based molecules. For a SAM of the dintro compound, V, approximately 25% of charge collected in the negative scan is stored in the molecules and can be collected at positive voltages. A possible mechanism involving lateral electron hopping is proposed to explain this phenomenon.  相似文献   

12.
2,1,3-Benzothiadiazole(BT) and its derivatives are very important acceptor units used in the development of photoluminescent compounds and are applicable for the molecular construction of organic light-emitting diodes, organic solar cells and organic field-effect transistors. Due to their strong electron-withdrawing ability, construction of molecules with the unit core of BT and its derivatives can usually improve the electronic properties of the resulting organic materials. In this contribution, we review the synthesis of various polymers, small molecules and metal complexes with BT and its derivatives and their applications in organic light-emitting diodes. Furthermore, the molecular design rules based on these cores are discussed.  相似文献   

13.
Using non-equilibrium Green’s function and first-principles calculations we study structural, electronic, and transport properties of Fe8C12 met-car cluster sandwiched between two Au (1 0 0) electrodes. Several orientations were considered for the cluster attached to the gold surface and full structural optimization has been performed for the whole two-probe system. It was found a large current value for the present device and the molecular orientation plays an important role in the conducting behavior of the system. In energetically favorable case the IV characteristic remains almost linear at low bias voltage (up to 1.5 V). This finding can be attributed to this fact that the transmission coefficient is almost flat around the gold Fermi level since the transmission is dominated by several broad molecular orbitals. We show that the electronic transmission is significantly spin-polarized while its size is large for the C atoms linkage. We also observe and discuss the NDR behavior of this novel molecular device in the range of 1.0–1.5 V for the energetically favorable configuration. The results are rationalized by analyzing the device transmission coefficient and density of states spectra.  相似文献   

14.
Recently, research on conducting molecules containing thiol functional groups such as benzenethiol has been progressing [X. Xiao, B. Xu, N.J. Tao, Nano Lett. 4 (2004) 267]. This conducting molecule is applicable to the study of the negative differential resistance (NDR) and switching properties of logic device. The 4-{4[4-(4-{1-[4-(4-acetylsulfanyl-phenylethynyl)-phenyl]-2,6-diphenyl-pyridinium-4-yl}-phenyl)-2,6-diphenyl-pyridinium-1-yl]-phenylethynyl}-phenylthioacetate (dipyridinium) molecule contains thiol functional groups such as benzenethiol. Thus, we have studied an NDR property of a dipyridinium molecule using the self-assembly method in scanning tunneling microscopy (STM). The Au substrate was exposed to a 1 mM solution of 1-dodecanethiol in ethanol for 24 h to form a monolayer. After thorough rinsing of the sample, it was exposed to a 0.1 μM solution of dipyridinium in dimethylformamide (DMF) for 30 min. After the assembly, we measured the electrical properties of the self-assembly monolayers (SAMs) using ultra high vacuum scanning tunneling microscopy (UHV-STM) and scanning tunneling spectroscopy (STS). As a result, we confirmed the properties of NDR in a negative region at −1.67 V and a positive region at 1.78 V. The energy gap (Eg) was found to be 3.12 eV [C. Arena, B. Kleinsorge, J. Robertson, W.I. Milne, M.E. Welland, J. Appl. Phys. 85 (1999) 1609]. This molecule is applicable to the fabrication of molecular junctions.  相似文献   

15.
For the realization of molecular electronics, one essential goal is the ability to systematically fabricate molecular functional components in a well-controlled manner. Experimental techniques have been developed such that π-stacked ethylbenzene molecules can now be routinely induced to self-assemble on an H-terminated Si(100) surface at precise locations and along precise directions. Electron transport calculations predict that such molecular wires could indeed carry an electrical current, but the Si substrate may play a considerable role as a competing pathway for conducting electrons. In this work, we investigate the effect of placing substituent groups of varying electron donating or withdrawing strengths on the ethylbenzene molecules to determine how they would affect the transport properties of such molecular wires. The systems consist of a line of π-stacked ethylbenzene molecules covalently bonded to a Si substrate. The ethylbenzene line is bridging two Al electrodes to model current through the molecular stack. For our transport calculations, we employ a first-principles technique where density functional theory (DFT) is used within the non-equilibrium Green’s function formalism (NEGF). The calculated density of states suggest that substituent groups are an effective way to shift molecular states relative to the electronic states associated with the Si substrate. The electron transmission spectra obtained from the NEGF–DFT calculations reveal that the transport properties could also be extensively modulated by changing substituent groups. For certain molecules, it is possible to have a transmission peak at the Fermi level of the electrodes, corresponding to high conduction through the molecular wire with essentially no leakage into the Si substrate.  相似文献   

16.
Based on certain single layer armchair h-BNC heterostructures, six molecular devices with different positions of single vacancy atoms are investigated to explain the modulating process of negative differential resistance (NDR) behaviors and rectifying performance. The results show that NDR behaviors can be observed clearly with vacancy atoms near the interface of graphene nano-ribbon and BN nano-ribbon, and rectifying performance can be enhanced obviously when there are vacancy atoms in the moiety of the BN nano-ribbon. The first-principles analysis of the microscopic nature reveals that strength of electronic transmission, evolutions of molecular orbitals and distributions of molecular states are the intrinsic responses to these transport properties.  相似文献   

17.
One of the challenges in molecular electronics is to design molecules which can be used as functional units in electronic devices. The subject of our investigations is an asymmetrical molecule, dihydroxy(4-thiomorpholinomethyl)benzoic acid (TMBA), whose structural and electronic properties are characterized. The self-assembly behavior of TMBA on Au(111) surfaces resulting in highly ordered monolayers is obtained using scanning tunneling microscopy (STM). Furthermore, investigations on the electronic properties of the combined metal/molecule system reveal an orbital mediated tunneling process and tunneling decay constants for the carboxylic and thiomorpholino group. Thus, a diode-like character of TMBA is shown to be caused by intrinsic electronic properties of different molecular moieties.  相似文献   

18.
Biphenyl- and fluorenyl-based potential molecular electronic devices   总被引:1,自引:0,他引:1  
New potential molecular electronics devices have been synthesized based on our knowledge of systems that we previously studied. Research has shown that simple molecular systems demonstrate negative differential resistance (NDR) and memory characteristics. The new molecules rely primarily on the redox properties of the compounds to improve upon the solid-state characteristics already observed. Electrochemical tests have been performed in order to evaluate the redox properties with the hope that the electrochemical results can be used as a predictive tool to evaluate the usefulness of those compounds in device configurations.  相似文献   

19.
The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.  相似文献   

20.
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange-correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and (13)C NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and (13)C NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid-state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号