首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

2.
We consider the operator $\mathcal {R}$ , which sends a function on ${\mathbb {R}}^{2n}$ to its integrals over all affine Lagrangian subspaces in ${\mathbb {R}}^{2n}$ . We discuss properties of the operator $\mathcal {R}$ and of the representation of the affine symplectic group in several function spaces on ${\mathbb {R}}^{2n}$ .  相似文献   

3.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

4.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

5.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

6.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

7.
Triebel (J Approx Theory 35:275–297, 1982; 52:162–203, 1988) investigated the boundary values of the harmonic functions in spaces of the Triebel–Lizorkin type ${\mathcal F^{\alpha,q}_{p}}$ on ${\mathbb{R}^{n+1}_+}$ by finding an characterization of the homogeneous Triebel–Lizorkin space ${{\bf \dot{F}}^{\alpha,q}_p}$ via its harmonic extension, where ${0 < p < \infty, 0 < q \leq \infty}$ , and ${\alpha < {\rm min}\{-n/p, -n/q\}}$ . In this article, we extend Triebel’s result to α < 0 and ${0 < p, q \leq \infty}$ by using a discrete version of reproducing formula and discretizing the norms in both ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf{\dot{F}}}^{\alpha,q}_p}$ . Furthermore, for α < 0 and ${1 < p,q \leq \infty}$ , the mapping from harmonic functions in ${\mathcal{F}^{\alpha,q}_{p}}$ to their boundary values forms a topological isomorphism between ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf \dot{F}}^{\alpha,q}_p}$ .  相似文献   

8.
Starting from two Lagrangian immersions and a Legendre curve ${\tilde{\gamma}(t)}$ in ${\mathbb{S}^3(1)}$ $({\rm or\,in}\,{\mathbb{H}_1^3(-1)})$ , it is possible to construct a new Lagrangian immersion in ${\mathbb{CP}^n(4)}$ $({\rm or\,in}\,{\mathbb{CH}^n(-4)})$ , which is called a warped product Lagrangian immersion. When ${\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i(- \frac{r_1}{r_2}at)})}$ $({\rm or}\,{\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i( \frac{r_1}{r_2}at)})})$ , where r 1, r 2, and a are positive constants with ${r_1^2+r_2^2=1}$ $({\rm or}\,{-r_1^2+r_2^2=-1})$ , we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of ${\mathbb{CP}^n(4)}$ or ${\mathbb{CH}^n(-4)}$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.  相似文献   

9.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

10.
We study the a priori estimates, existence/nonexistence of radial sign changing solution, and the Palais–Smale characterisation of the problem ${-\Delta_{{\mathbb B}^{N}}u - \lambda u = |u|^{p-1}u, u\in H^1({\mathbb B}^{N})}$ in the hyperbolic space ${{\mathbb B}^{N}}$ where ${1 < p\leq\frac{N+2}{N-2}}$ . We will also prove the existence of sign changing solution to the Hardy–Sobolev–Mazya equation and the critical Grushin problem.  相似文献   

11.
Let ${\mathcal{A}}$ be a collection of n linear hyperplanes in ${\mathbb{k}^\ell}$ , where ${\mathbb{k}}$ is an algebraically closed field. The Orlik-Terao algebra of ${\mathcal{A}}$ is the subalgebra ${{\rm R}(\mathcal{A})}$ of the rational functions generated by reciprocals of linear forms vanishing on hyperplanes of ${\mathcal{A}}$ . It determines an irreducible subvariety ${Y (\mathcal{A})}$ of ${\mathbb{P}^{n-1}}$ . We show that a flat X of ${\mathcal{A}}$ is modular if and only if ${{\rm R}(\mathcal{A})}$ is a split extension of the Orlik-Terao algebra of the subarrangement ${\mathcal{A}_X}$ . This provides another refinement of Stanley’s modular factorization theorem [34] and a new characterization of modularity, similar in spirit to the fibration theorem of [27]. We deduce that if ${\mathcal{A}}$ is supersolvable, then its Orlik-Terao algebra is Koszul. In certain cases, the algebra is also a complete intersection, and we characterize when this happens.  相似文献   

12.
13.
A residual existence theorem for linear equations   总被引:1,自引:0,他引:1  
A residual existence theorem for linear equations is proved: if ${A \in \mathbb{R}^{m\times n}}$ , ${b \in \mathbb{R}^{m}}$ and if X is a finite subset of ${\mathbb{R}^{n}}$ satisfying ${{\rm max}_{x \in X}p^T(Ax-b) \geq 0}$ for each ${p \in \mathbb{R}^{m}}$ , then the system of linear equations Axb has a solution in the convex hull of X. An application of this result to unique solvability of the absolute value equation Ax + B|x| = b is given.  相似文献   

14.
Tensor data are becoming important recently in various application fields. In this paper, we consider the maximal rank problem of 3-tensors and extend Atkinson and Stephens’ and Atkinson and Lloyd’s results over the real number field. We also prove the assertion of Atkinson and Stephens: ${{\rm max.rank}_{\mathbb{R}}(m,n,p) \leq m+\lfloor p/2\rfloor n}$ , ${{\rm max.rank}_{\mathbb{R}}(n,n,p) \leq (p+1)n/2}$ if p is even, ${{\rm max.rank}_{\mathbb{F}}(n,n,3)\leq 2n-1}$ if ${\mathbb{F}=\mathbb{C}}$ or n is odd, and ${{\rm max.rank}_{\mathbb{F}}(m,n,3)\leq m+n-1}$ if m < n where ${\mathbb{F}}$ stands for ${\mathbb{R}}$ or ${\mathbb{C}}$ .  相似文献   

15.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

16.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

17.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

18.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

19.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

20.
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold ${G_{n}\left(\mathbb{K}^{d}\right) }$ ( ${\mathbb{K=\mathbb{R}}}$ or ${\mathbb{C}}$ ). This invariant fully characterizes the p-tuple. We use it to classify the regular p-tuples of ${G_{2}\left(\mathbb{R}^{d}\right) }$ , ${G_{3}\left( \mathbb{R}^{d}\right) }$ and ${G_{2}\left( \mathbb{C}^{d}\right) }$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号