首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous carbon nanoparticles (ACNPs) showing highly efficient quenching of chemiluminescence (CL) were prepared from candle soot with a very simple protocol. The prepared ACNP was employed as the novel energy acceptor for a chemiluminescence resonance energy transfer (CRET)-based immunoassay. In this work, ACNP was linked with transferrin (TRF), and horseradish peroxidase (HRP) was conjugated to TRF antibody (HRP–anti-TRF). The immunoreaction rendered the distance between the ACNP acceptor and the HRP-catalyzed CL emitter to be short enough for CRET occurring. In the presence of TRF, this antigen competed with ACNP–TRF for HRP–anti-TRF, thus led to the decreased occurrence of CRET. A linear range of 20–400 ng mL−1 and a limit of detection of 20 ng mL−1 were obtained in this immunoassay. The proposed method was successfully applied for detection of TRF levels in human sera, and the results were in good agreement with ELISA method. Moreover, the ACNPs show higher energy transfer efficiency than other conventional nano-scaled energy acceptors such as graphene oxide in CRET assay. It is anticipated that this approach can be developed for determination of other analytes with low cost, simple manipulation and high specificity.  相似文献   

2.
A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL−1 for CEA, with a detection limit of 0.3 ng mL−1. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.  相似文献   

3.
The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.  相似文献   

4.
The paper describes the development of highly sensitive particle-based fluorescence resonance energy transfer (FRET) probes that do not use molecular fluorophores as donors and acceptors. In these probes, CdSe/ZnS luminescent quantum dots (QDs) were capped with multiple histidine-containing peptides to increase their aqueous solubility while maintaining their high emission quantum yield and spectral properties. The peptide-modified QDs (QD-His) were covalently attached to carboxyl-modified polystyrene (PS) microspheres to form highly emitting PS microspheres (QD-PS). Gold nanoparticles (AuNPs) were then covalently attached to the QD-PS surface to form AuNP-QD-PS composite microspheres that were used as FRET probes. Attachment of AuNPs to QD-PS completely quenched the QD emission through FRET interactions. The emission of QD-PS was restored when the AuNPs were removed from the surface by thiol ligand displacement. The new AuNP-QD-PS FRET platform is simple to prepare and highly stable, and it opens many new possibilities for carrying out FRET assays on microparticle-based platforms and in microarrays. The versatility of these assays could be greatly increased by replacing the linkers between the QDs and AuNPs with ones that selectively respond to specific cleaving agents or enzymes.  相似文献   

5.
An electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of alpha fetoprotein (AFP) was fabricated using graphene-CdS quantum dots-alginate (G-CdS QDs-AL) as the immobilizing support and CdSe/ZnS QDs as the label. CdSe/ZnS QDs could effectively scavenge the ECL of G-CdS QDs-AL composite, and the quenched ECL intensity depended linearly on the logarithm for AFP concentration in the range from 0.05 to 500 fg/mL. The detection limit was 20 ag/mL. The proposed ECL immunoassay protocol for AFP detection is stable, specific, highly sensitive and promising for clinical application.  相似文献   

6.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

7.
8.
Gao F  Cui P  Chen X  Ye Q  Li M  Wang L 《The Analyst》2011,136(19):3973-3980
A novel and efficient method to evaluate the DNA hybridization based on a fluorescence resonance energy transfer (FRET) system, with fluorescein isothiocyanate (FITC)-doped fluorescent silica nanoparticles (SiNPs) as donor and gold nanoparticles (AuNPs) as acceptor, has been reported. The strategy for specific DNA sequence detecting is based on DNA hybridization event, which is detected via excitation of SiNPs-oligonucleotide conjugates and energy transfer to AuNPs-oligonucleotide conjugates. The proximity required for FRET arises when the SiNPs-oligonucleotide conjugates hybridize with partly complementary AuNPs-oligonucleotide conjugates, resulting in the fluorescence quenching of donors, SiNPs-oligonucleotide conjugates, and the formation of a weakly fluorescent complex, SiNPs-dsDNA-AuNPs. Upon the addition of the target DNA sequence to SiNPs-dsDNA-AuNPs complex, the fluorescence restores (turn-on). Based on the restored fluorescence, a homogeneous assay for the target DNA is proposed. Our results have shown that the linear range for target DNA detection is 0-35.0 nM with a detection limit (3σ) of 3.0 picomole. Compared with FITC-dsDNA-AuNPs probe system, the sensitivity of the proposed probe system for target DNA detection is increased by a factor of 3.4-fold.  相似文献   

9.
The determination of binding constants using surface plasmon resonance (SPR) was introduced to optimise a competitive homogeneous fluorescence energy-transfer immunoassay (ETIA) before labelling. Steroids were chosen as model for the detection of three analytes estrone, estradiol and ethinylestradiol--by taking three polyclonal antibodies (anti estrone-, anti estradiol- and anti estrogen-antibodies) and the corresponding analyte derivatives used for the immunisation. The active concentration of the antibodies was determined before and after labelling. Inhibition curves were recorded using SPR for all possible combinations of analyte, antibody, and analyte derivatives. The experiments revealed that the active antibody concentration can be reduced to 30% whereas the antibody affinity is not affected by the labelling process. Limits of the use of SPR for determination of affinity constants in solution are discussed. All possible ETIA calibration for the quantification of estrone and estradiol was performed. The lower limits of detection for estrone (0.06 microg L(-1)) and estradiol (0.17 microg L(-1)) were reached with the anti-estrogen IgG and its derivative  相似文献   

10.
11.
12.
Jin Y  Shi W  Zhou M  Tu Y  Yan J 《Analytical sciences》2011,27(12):1185-1190
In the present work, two aptamer-based probes and related sensor systems were developed with chemiluminescence signaling. The detection was based on "turning-on" chemiluminescence with switching "off" of the resonance energy transfer after the aptamer's recognition of the target molecule. In this design, a DNA/aptamer duplex linked a chemiluminescence group and a gold nanoparticle together. Only low-intensity chemiluminescence was obtained due to the highly efficient resonance energy transfer. After introducting the target molecule, structure-switching took place with turning off the energy transfer; thus, a restoration and turning on of the chemiluminescence was obtained. The two designs differed in the chemiluminescence groups, since one was a covalently linked luminol molecule, while the other was a conjugated horseradish peroxidase for the catalysis of further chemiluminescence reactions. These schemes provided simple and effective sensing toward a model analyte, adenosine.  相似文献   

13.
A microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer (CRET) was developed for highly sensitive detection of neuron‐specific enolase (NSE). The CRET system consisted of horseradish peroxidase (HRP)/luminol as a light donor and fluorescein isothiocyanate as an acceptor. When fluorescein isothiocyanate‐labeled antibody binds with HRP‐labeled antigen to form immunocomplex, the donor and acceptor are brought close each other and CRET occurs in the immunocomplex. In the MCE, the immunocomplex and excess HRP–NSE were separated, and the chemiluminescense intensity of immunocomplex was used to estimate NSE concentration. The calibration curve showed a linearity in the range of NSE concentrations from 9.0 to 950 pM with a correlation coefficient of 0.9964. Based on a S/N of 3, the detection limit for NSE determination was estimated to be 4.5 pM, which is two‐order magnitude lower than that of without CRET detection. This assay was applied for NSE quantification in human serum. The obtained results demonstrated that the proposed immunoassay may serve as an alternative tool for clinical analysis of NSE.  相似文献   

14.
We report on a novel strategy to improve microfluidic immunoassay sensitivity by introducing chemiluminescence resonance energy transfer (CRET) into the immunoreactions. The proposed CRET-based immunoassay for estradiol (E2, as a model analyte) is one of the most sensitive immunoassay with a limit of detection at 3.6 × 10(-11) M E2 in a microfluidic format.  相似文献   

15.
A quantum electrodynamical calculation is presented that focuses individually on the two quantum pathways or time orderings for resonance energy transfer. Conventional mathematical procedures necessitate summing the quantum pathway amplitudes at an early stage in the calculations. Here it is shown, by the adoption of a different strategy that allows deferral of the amplitude summation, that it is possible to elicit key information regarding the relative significance of the two pathways and their distinct distance dependences. A special function integration method delivers equations that also afford new insights into the behavior of virtual photons. It is explicitly demonstrated that both time-ordered pathways are effective at short distances, while in the far field the dissipation of virtual traits favors one pathway. Hitherto unknown features are exhibited in the oblique asymptotic behavior of the time-ordered contributions and their quantum interference. Consistency with the rate equations of resonance energy transfer is demonstrated and results are presented graphically.  相似文献   

16.
17.
We present a novel immunoassay format utilizing the catalytic properties of gold nanoparticles in the luminol-silver nitrate-gold nanoparticle based chemiluminescence (CL) system for the detection of widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Highly sensitive anti-2,4-D antibody was produced and conjugated with gold nanoparticles of various sizes. In the present assay format, employing a competitive inhibition approach, a well-characterized hapten-protein conjugate (2,4-D-BSA) was used to coat the microtiter plates. The analyte (2,4-D) was pre-incubated with anti-2,4-D antibody labeled with gold nanoparticles and added to each well of the microtiter plate. The gold label triggered the reaction between luminol and silver nitrate generating a luminescence signal at 425 nm. Under the optimized conditions, the CL based immunoassay showed the detection limit of 2,4-D in standard water samples around 3 ng mL(-1). The CL based immunoassay format, based on gold nanoparticles as a catalyst, could be used as a fast screening methodology (<30 min) for pesticide detection.  相似文献   

18.
Many well-established homogeneous separation free immunoassays rely on particulate label technologies. Particles generally contain a high concentration of the embedded label and they have a large surface area, which enables conjugation of a large amount of protein per particle. Eu(III)-chelate dyed nanoparticles have been successfully used as labels in heterogeneous and homogeneous immunoassays. In this study, we compared the characteristics of two homogeneous competitive immunoassays using either soluble Eu(III)-chelates or polystyrene particles containing Eu(III)-chelates as donors in a fluorescence resonance energy transfer based assay. The use of the particulate label significantly increased the obtained sensitized emission, which was generated by a single binding event. This was due to the extremely high specific activity of the nanoparticle label and also in some extent the longer Förster radius between the donor and the acceptor. The amount of the binder protein used in the assay could be decreased by 10-fold without impairing the obtainable sensitized emission, which subsequently led to improved assay sensitivity. The optimized assay using particulate donor had the lowest limit of detection (calculated using 3 × S.D. of the 0 nM standard) 50 pM of estradiol in the assay well, which was approximately 20-fold more sensitive than assays using soluble Eu(III)-chelates.  相似文献   

19.
The water-soluble CdS nanoparticles were synthesized in aqueous solution. A novel fluorescence resonance energy transfer (FRET) system with CdS nanoparticles as energy donors and 3,30-diethyl-oxadicarbocyanine iodide (DOCAI) dyes as energy accepter has been developed.  相似文献   

20.
We used lanthanide-ion doped oxide nanoparticles, Y(0.6)Eu(0.4)VO(4), as donors in fluorescent resonance energy transfer (FRET) experiments. The choice of these nanoparticles allows us to combine the advantages of the lanthanide-ion emission, in particular the long lifetime and the large Stokes shift between absorption and emission, with the detectability of the nanoparticles at the single-particle level. Using cyanine 5 (Cy5) organic molecules as acceptors, we demonstrated FRET down to the single-nanoparticle level. We showed that, due to the long donor lifetime, unambiguous and precise FRET measurements can be performed in solution even in the presence of large free acceptor concentrations. Highly efficient energy transfer was obtained for a large number of acceptor molecules per donor nanoparticle. We determined FRET efficiencies as a function of Cy5 concentration which are in good agreement with a multiple acceptor-multiple donor calculation. On the basis of the donor emission recovery due to acceptor photobleaching, we demonstrated energy transfer from single-nanoparticle donors in fluorescence microscopy experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号