首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.  相似文献   

2.
有机胺修饰具有较大孔径介孔材料的二氧化碳吸附性能   总被引:2,自引:0,他引:2  
以非离子表面活性剂P123为模板剂,正硅酸甲酯为硅源,通过加入不同的扩孔剂制得具有较大孔径的SBA-15类介孔材料,并采用粉末X射线衍射(XRD)、低温氮气吸附-脱附、扫描电镜(SEM)、傅里叶变换红外(FTIR)光谱等手段对所得样品进行了表征.加入扩孔剂可以明显增大介孔材料的孔容和孔径,而异辛烷为扩孔剂的扩孔效果明显优于四氯化碳.经四乙烯五胺(TEPA)镀饰后,这些样品均表现出良好的CO2吸附性能.其中对于除去模板剂后再镀胺的样品,其CO2吸附能力与介孔材料孔道结构关系不大,而对于未除模板剂的原粉镀胺样品,CO2吸附能力则随孔道的变大而增强.此外,通过吸附等温线和CO2-程序升温脱附(TPD)手段比较了温度和压力对CO2吸附的影响,发现在较高温度下吸附时CO2的吸附能力随压力的变化存在显著差别,因而在这类TEPA修饰的介孔材料上可通过变压吸附的途径来实现对环境气流中CO2的吸附和分离.  相似文献   

3.
采用层层自组装的方法,以微米多孔硅胶小球为核,将硅胶纳米粒子多层包覆,制备了核壳型SiO2/SiO2硅胶小球.透射电子显微镜表明这种硅胶小球具有明显的核壳结构,氮气吸附实验证明该硅胶小球是典型的介孔材料,具有良好的介孔结构和窄的孔径分布.将其作为基质制备碳十八键合核壳型SiO2/SiO2色谱固定相,该固定相的碳含量与未...  相似文献   

4.
在无模板剂的条件下,通过控制氨水用量,利用正硅酸乙酯水解制备了粒径约20 nm的SiO2初级粒子;随后用过量氨水诱导SiO2初级粒子交联生长,得到孔径在10~50 nm、孔容达2.05 cm3.g-1的介孔SiO2;考察了介孔SiO2的吸附性能.结果表明,所制备的介孔SiO2具有优良的吸附性能.  相似文献   

5.
Azobenzene (Az) groups were planted on the pore wall of mesoporous silica MCM-41 (M41) by silylation of triethoxy[4-phenylazo(phenyl)]silane. The optimal surface density of Az groups was 0.9 group nm-2, and too much loading of Az induced the lowering of the efficiency of the trans-cis isomerization due to the congestion of the groups. The reversible change in the pore diameters upon UV-vis irradiation could not be confirmed by N2 adsorption at 77 K but was revealed to be ca. 1.0 nm by the shift of the UV-vis absorption band of p-N,N-dimethylaminobenzylidenemalononitrile introduced into the Az-modified pores.  相似文献   

6.
Highly dispersed gold particles (<2 nm) were synthesized within the pores of mesoporous silica with pore sizes ranging from 2.2 to 6.5 nm and different pore structures (2D-hexagonal, 3D-hexagonal, and cubic). The catalysts were reduced in flowing H2 at 200 degrees C and then used for CO oxidation at temperatures ranging from 25 to 400 degrees C. The objective of this study was to investigate the role of pore size and structure in controlling the thermal sintering of Au nanoparticles. Our study shows that sintering of Au particles is dependent on pore size, pore wall thickness (strength of pores), and pore connectivity. A combination of high-resolution TEM/STEM and SEM was used to measure the particle size distribution and to determine whether the Au particles were located within the pores or had migrated to the external silica surface.  相似文献   

7.
Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: approximately 200 degrees C for amorphous/mesoporous silica, approximately 230 degrees C for metal oxides, and approximately 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm(-1) for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.  相似文献   

8.
Stockmayer流体在活性炭孔中的吸附的分子模拟   总被引:1,自引:0,他引:1  
金文正  汪文川 《化学学报》2000,58(6):622-626
应用巨正则系综monteCarlo方法模拟Stockmayer流体[以一氯二氟甲烷(R22)为代表]在活性炭孔中的吸附。模拟中R22分子采用等效Stockmayer势能模型,狭缝碳孔墙采用10-4-3模型。通过模拟得到了最佳孔径,并在最佳孔径下,针对不同的主体压力及活性基团密度,得到了吸附等温线、孔中流体的局部密度分布图和较为直观的孔内流体分子的瞬时构象,分析了吸附等温线的特征及孔内流体的吸附结构,认为在0.0,1.0sites/nm^2的活性基团密度下的碳孔内分别发生物理及化学吸附,并确定了最佳操作压力,为工业设计合适的催化剂提供依据。  相似文献   

9.
The densities of pore-confined fluids were measured for the first time by means of vibrating tube densimetry (VTD). A custom-built high-pressure, high-temperature vibrating tube densimeter was used to measure the densities of propane at subcritical and supercritical temperatures (between 35 and 97 °C) and carbon dioxide at supercritical temperatures (between 32 and 50 °C) saturating hydrophobic silica aerogel (0.2 g/cm(3), 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, supercritical isotherms of excess adsorption for CO(2) and the same porous solid were measured gravimetrically using a precise magnetically coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum and then decreased toward zero or negative values above the critical density of the bulk fluid. The isotherms of confined fluid density and excess adsorption obtained by VTD contain additional information. For instance, the maxima of excess adsorption occur below the critical density of the bulk fluid at the beginning of the plateau region in the total adsorption, marking the end of the transition of pore fluid to a denser, liquidlike pore phase. Compression of the confined fluid significantly beyond the density of the bulk fluid at the same temperature was observed even at subcritical temperatures. The effect of pore confinement on the liquid-vapor critical temperature of propane was less than ~1.7 K. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. Good quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Thus, it is demonstrated that vibrating tube densimetry is a novel experimental approach capable of providing directly the average density of pore-confined fluids, and hence complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess).  相似文献   

10.
E. A. Ustinov  D. D. Do 《Adsorption》2005,11(5-6):455-477
Adsorption of argon at its boiling point in finite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented.  相似文献   

11.
We discuss the thermodynamics of adsorption of fluids in pores when the solid-fluid interactions lead to partial wetting of the pore walls, a situation encountered, for example, in water adsorption in porous carbons. Our discussion is based on calculations for a lattice gas model of a fluid in a slit pore treated via mean field density functional theory (MFDFT). We calculate contact angles for pore walls as a function of solid-fluid interaction parameter, alpha, in the model, using Young's equation and the interfacial tensions calculated in MFDFT. We consider adsorption and desorption in both infinite pores and in finite length pores in contact with the bulk. In the latter case, contact with the bulk can promote evaporation or condensation, thereby dramatically reducing the width of hysteresis loops. We show how the observed behavior changes with alpha. By using a value of alpha that yields a contact angle of about 85 degrees and maintaining the bulk fluid in a supersaturated vapor state on adsorption, we find an adsorption/desorption isotherm qualitatively similar to those for graphitized carbon black where pore condensation occurs at supersaturated bulk vapor states in the spaces between the primary particles of the adsorbent.  相似文献   

12.
微孔中简单流体扩散行为的分子动力学模拟研究   总被引:3,自引:0,他引:3  
用分子动力学模拟方法研究了受限在微孔中的简单流体氩的扩散行为,考察了微孔类型、孔径、温度和密度对微孔中流体扩散系数的影响.研究发现,微孔中流体的扩散系数均小于体相流体,并且随孔径的减小而减小,同时沿孔道或狭缝方向的扩散系数分量远大于沿孔径方向的分量,并且流体在通道型微孔中的扩散系数小于在狭缝型微孔中的扩散系数,温度和密度也是影响微孔中扩散的重要因素.  相似文献   

13.
A non-hydrolytic one pot sol-gel method has been used to synthesize mesoporous silica ionogels with the confined ionic liquid (IL) 1-ethyl 3-methyl imidazolium tetra fluoro-borate [EMIM][BF(4)]. The precursor for obtaining the SiO(2) matrix was tetraethyl orthosilicate (TEOS) and formic acid was used as a catalyst. These ionogels have been characterized by density measurements, TEM, BET, DSC, TGA and FTIR. The incorporation of the ionic liquid [EMIM][BF(4)] enhances the gellification rate which results in the ionogels having very low density (~0.3 g cm(-3)). The low density has been explained on the basis of the creation of 'blind embedded pores' in the matrix (apart from open pores) due to very rapid gellification (~1 min). Morphological studies provide experimental evidence for the presence of blind pores/voids inside the ionogel ingots. We have also shown that the IL entrapped in nanopores (~7-8 nm pore size) of the SiO(2) matrix has different physical properties than the bulk IL viz. (a) the phase transition temperatures (T(g), T(c) and T(m)) of the IL change upon confinement, (b) the thermal stability reduces upon confinement, and (c) the pore wall interaction with the IL results in changes in the C-H vibrations of the imidazolium ring and alkyl chain (the former increasing) which is also indicated in our DFT-calculation.  相似文献   

14.
The effect of processing mesoporous silica thin films with supercritical CO2 immediately after casting is investigated, with a goal of using the penetration of CO2 molecules in the tails of fluorinated surfactant templates to tailor the final pore size. Well-ordered films with two-dimensional hexagonal close-packed pore structure are synthesized using a cationic fluorinated surfactant, 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)pyridinium chloride, as a templating agent. Hexagonal mesopore structures are obtained for both unprocessed films and after processing the cast films in CO2 at constant pressure (69-172 bar) and temperature (25-45 degrees C) for 72 h, followed by traditional heat treatment steps. X-ray diffraction and transmission electron microscopy analysis reveal significant increases in pore size for all CO2-treated thin films (final pore diameter up to 4.22 +/- 0.14 nm) relative to the unprocessed sample (final pore diameter of 2.21 +/- 0.20 nm) before surfactant extraction. Similar pore sizes are obtained with liquid and supercritical fluid treatments over the range of conditions tested. These results demonstrate that combining the tunable solvent strength of compressed and supercritical CO2 with the "CO2-philic" nature of fluorinated tails allows one to use CO2 processing to control the pore size in ordered mesoporous silica films.  相似文献   

15.
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.  相似文献   

16.
17.
块状TiO2/SiO2气凝胶的非超临界干燥法制备及其表征   总被引:11,自引:0,他引:11  
分别通过TiO2和SiO2的单独溶胶和TiO2/SiO2复合凝胶,并添加干燥控制化学添加剂甲酰胺,形成比较完善的凝胶网络结构,同时通过正硅酸乙酯的乙醇溶液浸泡,低表面张力溶剂替换和分级陈化以及干燥等步骤,实现了块状TiO2/SiO2复合气凝胶的非超临界干燥制备.所得TiO2/SiO2气凝胶为无色或乳白色轻质块状多孔固体,表观密度约0.4~0.9g/cm3,孔隙率约80%~95%.它由直径约10nm的TiO2和SiO2微粒相互分散复合而成,孔洞直径约几十纳米.其相态SiO2为无定形,TiO2为锐钛矿晶型.随着焙烧温度的升高,直到800℃不发生相变化.  相似文献   

18.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

19.
In this paper we investigate the use of supercritical carbon dioxide (sc-CO(2)) for synthesizing calcined mesoporous silicas with tunable pore sizes, wall thickness, and d spacings. Small angle neutron scattering was used to probe the controlled swelling of the triblock copolymer surfactant templating agents, P123 (PEO(20)PPO(69)PEO(20)), P85 (PEO(26)PPO(39)PEO(26)), and F127 (PEO(106)PPO(70)PEO(106)), as a function of CO(2) pressure. The transition from the liquid crystal phase to the calcined mesoporous silicas, formed upon condensation and drying, was also studied in detail. Powder X-ray diffraction, transmission electron microscopy, and nitrogen adsorption techniques were used to establish pore diameters, silica wall widths, and the hexagonal packing of the pores within the calcined silicas. Using a direct templating method, the diameters of mesopores and the spacing between the pores could be tuned with a high level of precision. The swelling process was observed to have no detrimental effects on the quality of silica formed, a distinct advantage over conventional swelling techniques, and all of the silicas synthesized in this study were highly ordered over distances of at least 2000 A.  相似文献   

20.
Pore and surface diffusion of carbon dioxide (CO(2)) and ethylene (C(2)H(4)) in the nanopores of ordered mesoporous silica fibers about 200 microm in length was measured by the transient gravimetric method. The experimentally determined pore diffusivity data, coupled with the porosity, pore size, and fiber length, are used to obtain the actual length of the nanopores in silica fibers. These measurements reveal a structure of the ordered nanopores whirling helically around the fiber axis with a spiral diameter of about 15 microm and a pitch value of 1.6 microm. At room temperature the surface diffusion contributes about 10% to the total diffusional flux for these two gases in the nanopores of the ordered mesoporous silica fibers. The surface diffusion coefficients for the ordered mesoporous silica fibers are about 1 order of magnitude larger than the non-ordered mesoporous alumina or silica with similar pore size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号