首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.  相似文献   

2.
New Schiff bases and new hydrazones were synthesized and studied by (13)C and (15)N CP/MAS spectroscopy and by (1)H--(1)H COSY, (1)H--(13)C HMBC, (1)H--(13)C HSQC, (1)H--(15)N HMQC and (1)H--(15)N HSQC correlations. The CP/MAS investigation of gossypol has demonstrated that in the solid state it exists exclusively in the aldehyde-aldehyde tautomeric form. In contrast, CP/MAS studies of hydrazones and Schiff bases reveal that these compounds occur in the solid state in the N-imine-N-imine and enamine-enamine tautomeric forms, respectively. It is shown that the (13)C resonances of C-6, C-7 and C-11 carbon atoms are suitable for distinguishing between the tautomeric forms of aza-derivatives of gossypol in the solid state. Furthermore, we have proved that the (15)N CP/MAS spectra can be used to identify these tautomeric forms.  相似文献   

3.
Tetrazine-based organic species are interesting intermediates for organic synthesis and represent a source of new materials bearing specific properties with potential applications in biology and material science. 1H, 13C, 15N NMR measurements carried out in solution and in the solid-state have been used to characterize a series of 3,6-disubstituted 1,2,4,5-tetrazine/dihydrotetrazine new derivatives. Experimental results presented here provide data for the assignment of 15N chemical shifts including new organic small molecules; two polymers having the tetrazine ring in the main chain and several previously published compounds. We report apparently for the first time 15N experimental chemical shift data for tetrazine systems in the solid state.  相似文献   

4.
The 1H, 13C and 15N NMR spectra in DMSO‐d6 were measured for eight nitraminopyridine N‐oxides, ten 4‐nitropyridine N‐oxides, four 2‐nitraminopyridines and five 4‐nitropyridines. Their chemical shift assignments are based on PFG 1H,X (X = 13C and 15N) HMQC and HMBC experiments. The relative energies for the tautomers of two nitraminopyridine N‐oxides were determined by ab initio HF/6–311G** calculations. A single‐crystal x‐ray structural analysis was made for 4‐methyl‐2‐nitraminopyridine: C6H7O2N3, M = 153.15, triclinic, space group P‐1 (No. 2), a = 7.0275(4), b = 6.8034(3), c = 8.6086(5) Å, α = 103.620(2), β = 90.309(2), γ = 122.215(3)°, V = 334.11(3) Å3, Z = 2. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
X‐ray data show that the diethyl 6,13‐bis[(Z)‐cyanomethylidene]‐5,5,14,14‐tetramethyl‐4,15‐dioxa‐7,12‐diazapentacyclo[9.5.2.02,10.03,7.012,16]octadeca‐8,17‐diene‐10,17‐dicarboxylate is formed as the ZZ isomer and diastereomer with the (1R*,2R*,3R*,10S*,11R*,12R*,16R*) configuration. The 1H, 13C, and 15N NMR data exhibit that on standing in chloroform‐d solution, there is a spontaneous isomerization of this compound resulting in a thermodynamically stable mixture of the ZZ, ZE, EE, and EZ isomers with the same backbone. Using the 2D [1H–1H] COSY, [1H–13C] HSQC, and [1H–13C, 1H–15N] HMBC NMR techniques and quantum chemical calculations makes it possible a complete assignment of signals in the 1H, 13C, and 15N NMR spectra of each of the isomers. Such isomerization does not occur for similar compounds with the more bulky substituents at the 1,3‐oxazolidine rings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号