首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biphasic one‐pot polymerization method enables the preparation of block copolymers from monomers with similar and competitive reactivities without the addition of external materials. AB diblock copolymers were prepared by encapsulating a frozen solution of monomer B on the bottom of a reaction vessel, while the solution polymerization of monomer A was conducted in a liquid layer above. Physical separation between the solid and liquid phases permitted only homopolymerization of monomer A until heating above the melting point of the lower phase, which released monomer B, allowing the addition of the second block to occur. The triggered release of monomer B allowed for chain extension without additional deoxygenation steps or exogenous monomer addition. A method for the closed (i.e., without addition of external reagents) one‐pot synthesis of block copolymers with conventional glassware using straightforward experimental techniques has thus been developed.  相似文献   

2.
Summary: Plasma‐initiated controlled/living radical polymerization of methyl methacrylate (MMA) was carried out in the presence of 2‐cyanoprop‐2‐yl 1‐dithionaphthalate. Well‐defined poly(methyl methacrylate) (PMMA), with a narrow polydispersity, could be synthesized. The polymerization is proposed to occur via a RAFT mechanism. Chain‐extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA‐block‐PSt copolymer.

Dependence of ln([M]0/[M]) on post‐polymerization time (above), and \overline M _{\rm n} and PDI against conversion (below) for plasma initiated RAFT polymerization of MMA at 25 °C.  相似文献   


3.
After a brief history that positions polymerization‐induced self‐assembly (PISA) in the field of polymer chemistry, this Review will cover the fundamentals of the PISA mechanism. Furthermore, this Review will also give an overview of some of the features and limitations of RAFT‐mediated PISA in terms of the choice of the components involved, the nature of the nanoobjects that can be obtained and how the syntheses can be controlled, as well as some potential applications.  相似文献   

4.
Polymerization‐induced self‐assembly (PISA) was employed to compare the self‐assembly of different amphiphilic block copolymers. They were obtained by emulsion polymerization of styrene in water using hydrophilic poly(N‐acryloylmorpholine) (PNAM)‐based macromolecular RAFT agents with different structures. An average of three poly (ethylene glycol acrylate) (PEGA) units were introduced either at the beginning, statistically, or at the end of a PNAM backbone, resulting in formation of nanometric vesicles and spheres from the two former macroRAFT architectures, and large vesicles from the latter. Compared to the spheres obtained with a pure PNAM macroRAFT agent, composite macroRAFT architectures promoted a dramatic morphological change. The change was induced by the presence of PEGA hydrophilic side‐chains close to the hydrophobic polystyrene segment.  相似文献   

5.
We report on the design of a polymeric prodrug of the anticancer agent paclitaxel (PTX) by a grafting‐from‐drug approach. A chain transfer agent for reversible addition fragmentation chain transfer (RAFT) polymerization was efficiently and regioselectively linked to the C2′ position of paclitaxel, which is crucial for its bioactivity. Subsequent RAFT polymerization of a hydrophilic monomer yielded well‐defined paclitaxel–polymer conjugates with high drug loading, water solubility, and stability. The versatility of this approach was further demonstrated by ω‐end post‐functionalization with a fluorescent tracer. In vitro experiments showed that these conjugates are readily taken up into endosomes where native PTX is efficiently cleaved off and then reaches its subcellular target. This was confirmed by the cytotoxicity profile of the conjugate, which matches those of commercial PTX formulations based on mere physical encapsulation.  相似文献   

6.
Photoregulated polymerizations are typically conducted using high‐energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near‐infrared (NIR) and far‐red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization. Well‐defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far‐red (λ=780 nm) irradiation with excellent control over the molecular weight (Mn/Mw<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.  相似文献   

7.
Hybrid latexes based on cerium oxide nanoparticles are synthesized via an emulsifier‐free process of emulsion polymerization employing amphiphatic macro‐RAFT agents. Poly(butyl acrylate‐co‐acrylic acid) random oligomers of various compositions and chain lengths are first obtained by RAFT copolymerization in the presence of a trithiocarbonate as controlling agent. In a second step, the seeded emulsion copolymerization of styrene and methyl acrylate is carried out in the presence of nanoceria with macro‐RAFT agents adsorbed at their surface, resulting in a high incorporation efficiency of cerium oxide nanoparticles in the final hybrid latexes, as evidenced by cryo‐transmission electron microscopy.  相似文献   

8.
This paper presents the solution homopolymerization, random and block copolymerization of acrylic monomers, mediated using an S‐(1,4‐phenylenebis(propane‐2,2‐diyl)) bis(N,N‐butoxycarbonylmethyldithiocarbamate) RAFT agent. Fair to good control was obtained over the solution homopolymerization of various acrylic monomers. Although inhibition periods were observed, nearly no retardation was found to occur. Satisfactory control was also obtained over the solution copolymerization of n‐butyl acrylate with methacrylic acid, mediated using this RAFT agent. Finally, triblock copolymer synthesis, starting from the macromolecular intermediates produced in the homo‐ and copolymerization experiments, was studied, and was shown to be successful. The observed relatively broad molar mass distributions could be explained by a partial decomposition of the dithiocarbamate‐based RAFT agent during synthesis and/or polymerization, for which strong indications were obtained by performing a careful MALDI‐ToF MS analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6419–6434, 2006  相似文献   

9.
10.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Ab initio reversible addition fragmentation chain transfer (RAFT) emulsion polymerization of butadiene was investigated by using the amphiphilic poly(acrylic acidnb‐styrene5) trithiocarbonate as both surfactant and mediator. The neutralization on acrylic acid (AA) units played significant influence on the gelation. When half of the AA units were neutralized, the gelation occurred in the early stage of the polymerization so that the highest accessible molecular weight of polybutadiene was as low as 5 kg mol?1. In the non‐neutralized conditions, the gelation was much retarded so that the highest accessible molecular weight was increased up to 23 kg mol?1. In the non‐neutralized conditions, potassium persulfate could not initiate the polymerization. When azobisisobutyronitrile was used as initiator, the polymerization mediated by poly(acrylic acid27b‐styrene5) trithiocarbonate could proceed much faster than the solution polymerization did. The latex was stable. Before the gel point, molecular weight agreed well with the theoretical prediction while PDI was relatively high due to the branching reaction. The poly(butadiene‐b‐styrene) core/shell particles could obtained by extending polybutadiene. When the n value in poly (acrylic acidnb‐styrene5) trithiocarbonate was lower than 20, the coalescence would occur, leading to the formation of some coagulum. On the other hand, when n value was as high as 60, the molecular weight was out of control. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
In this study, we report the use of a double‐headed dialkoxyamine trithiocarbonate ( I ) capable of acting as chain transfer agent via reversible addition‐fragmentation chain transfer polymerization or as initiator via nitroxide‐mediated polymerization. It is worth mentioning that I was revealed as an effective dual chain transfer agent in the synthesis of multiblock copolymers via bulk and emulsion processes. In this article, we report the employing of I in dispersed systems to obtain amphiphilic multiblock copolymers and latexes. In this case, a water soluble macroagent of PAA previously synthetized was used in disperse media using a mixture of methanol/water (70:30, w/w). Stable latexes were obtained via polymerization‐induced self‐assembly and surface‐initiated polymerization of SSNa from alkoxyamine‐functionalized latex PAA‐b‐PS‐b‐PAA was also obtained © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 437–444  相似文献   

13.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

14.
The use of hemoglobin (Hb) contained within red blood cells to drive a controlled radical polymerization via a reversible addition‐fragmentation chain transfer (RAFT) process is reported for the first time. No pre‐treatment of the Hb or cells was required prior to their use as polymerization catalysts, indicating the potential for synthetic engineering in complex biological microenvironments without the need for ex vivo techniques. Owing to the naturally occurring prevalence of the reagents employed in the catalytic system (Hb and hydrogen peroxide), this approach may facilitate the development of new strategies for in vivo cell engineering with synthetic macromolecules.  相似文献   

15.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

17.
A clickable alkyne monomer, PgMA, was successfully polymerized in a well‐controlled manner via single electron transfer initiation and propagation through the radical addition fragmentation chain transfer (SET‐RAFT) method. The living nature of the polymerization was confirmed by the first‐order kinetic plots, the linear relationships between molecular weights and the monomer conversions while keeping relatively narrow (≤1.55), and the successful chain‐extension with MMA. The better controllability of SET‐RAFT than other CRP methods is attributed to the less competitive termination in view of the presence of the CTA as well as the Cu(II) that is generated in situ. Moreover, a one‐pot/one‐step technique combining SET‐RAFT and “click chemistry” methods has been successfully employed to prepare the side‐chain functionalized polymers.

  相似文献   


18.
19.
Superhydrophobic surfaces (SHS) find versatile applications as coatings due to their very high water‐repellency, self‐cleaning, and anti‐icing properties. This investigation describes the preparation of a SHS from surfactant‐free hybrid fluoropolymer latex. In this case, reversible addition‐fragmentation chain transfer (RAFT) polymerization was adopted to prepare a copolymer of 4‐vinyl pyridine (4VP) and vinyl triethoxysilane (VTES), where the pyridine units were quaternized to make the copolymer soluble in water. The copolymer was further used as a macro‐RAFT agent to polymerize 2,2,2‐trifluoroethyl methacrylate (TFEMA) in a surfactant‐free emulsion via polymerization‐induced self‐assembly (PISA). The macro‐RAFT agent contained a small amount of VTES as co‐monomer which was utilized to graft silica nanoparticles (SNPs) onto the P(TFEMA) spheres. The film prepared using the nanocomposite latex exhibited a nano‐structured surface as observed by SEM and AFM analyses. Surface modification of the film with fluorinated trichlorosilane produced an SHS with a water contact angle (WCA) of 151.5°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 266–275  相似文献   

20.
A series of polystyrene‐block‐poly(polyethylene glycol monomethyl ether acrylate) (PStmb‐PPEGAn) polymers were systematically synthesized as carriers for zinc phthalocyanine (ZnPc) for photodynamic therapy via reversible addition and fragmentation chain transfer polymerization. The degree of polymerization of the styrene (m) and PEGA units (n) of the resulting block copolymers were characterized to be n = 174, 40, and 18 for m = 52; and n = 200, 84, and 31 for m = 30. All the block copolymers formed micelles in water. The critical micelle concentration (CMC) of the PStmb‐PPEGAn was determined by fluorometry using pyrene as a hydrophobic probe. The CMC value increased from 4.5 to 20 mg·L−1 with an increase in the mole fraction of PEGA units. The median diameters of the micelles increased from 19 to 31 nm for PSt52b‐PPEGAn and from 15 to 23 nm for PSt30b‐PPEGAn with increasing n value. ZnPc‐loaded micelles were prepared by dialysis of the block copolymer in the presence of ZnPc followed by removal of large aggregates by filtration. The encapsulation efficiency was dramatically changed in the range of 0–68%. The light‐dose‐dependent cytotoxicity of the ZnPc‐loaded PSt30b‐PPEGA200 was clearly established in HeLa cell lines; while no cytotoxicity was confirmed under the dark. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 560–570  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号