首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Temperature-sensitive hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), and sodium alginate were prepared by free radical polymerization method. Methylenebisacrylamide (MBA) and amonium persulfate (APS) were applied as water soluble crosslinker and initiator, respectively. The chemical structure of the hydrogels was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA) methods. Morphology of the samples was examined by scanning electron microscopy (SEM). By changing the initial TBA/AAm mole ratios, hydrogels with different swelling properties were obtained. The rate parameters were found to be 2.0, 2.4, and 3.5 min for the superabsorbents with AAm/TBA weight ratio of 1.0, 1.3 and 2.0 respectively. The swelling behavior in distilled water and different pH solutions was investigated. A preliminary swelling kinetics and the absorbency under load (AUL) were also studied. At the applied pressure (2.07 kPa), maximum swelling was found to be 17, 19, and 21 (g/g) for the superabsorbent hydrogels with AAm/TBA weight ratios of 1.0, 1.5 and 2.0, respectively.  相似文献   

3.
4.
5.
以咔唑和对二氯甲基苯为原料, 合成了以咔唑为Z基团的双功能团RAFT聚合链转移试剂N-咔唑二硫代甲酸1,4-对二甲基苯双酯(PXCBD). 以PXCBD为链转移试剂, 以苯乙烯、丙烯酸甲酯及N,N-二丁基丙烯酰胺为单体, 考察了PXCBD在RAFT聚合中合成多嵌段共聚物上的应用, 并研究了PXCBD及由其合成的聚合物的荧光特性. 研究结果表明, PXCBD是一种性能优异的双功能团RAFT聚合链转移试剂, 可用于合成特殊结构并且带有荧光标识的功能高分子材料.  相似文献   

6.
The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition–fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl‐OC(?S)S‐R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl‐type propagating radicals induces a side fragmentation reaction of the stabilizing O‐alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control.  相似文献   

7.
可逆加成-断裂链转移(RAFT)聚合作为一种新型活性自由基聚合,由于其具有单体适用面广、操作条件温和、实施聚合的方法多--本体、溶液、乳液、悬浮聚合均可的优点已经在分子设计方面取得了广泛的应用.星形聚合物作为一种特殊结构的聚合物,由于其具有较低的结晶度、较小的流体动力学体积等独特的性质,越来越引起研究者的重视.本文综述了近几年来采用RAFT法合成星形聚合物的研究进展.根据合成星形聚合物所用的RAFT多官能团试剂种类,对RAFT法合成星形聚合物的反应进行了分类.  相似文献   

8.
Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature‐dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme‐free cell culture systems.

  相似文献   


9.
This article provides a critical review of the properties, synthesis, and applications of dithiocarbamates Z′Z″NC(=S)SR as mediators in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These are among the most versatile RAFT agents. Through choice of substituents on nitrogen (Z′, Z″), the polymerization of most monomer types can be controlled to provide living characteristics (i.e., low dispersities, high end‐group fidelity, and access to complex architectures). These include the more activated monomers (MAMs; e.g., styrenes and acrylates) and the less activated monomers (LAMs; e.g., vinyl esters and vinylamides). Dithiocarbamates with balanced activity (e.g., 1H‐pyrazole‐1‐carbodithioates) or switchable RAFT agents [e.g., a N‐methyl‐N‐(4‐pyridinyl)dithiocarbamate] allow control MAMs and LAMs with a single RAFT agent and provide a pathway to low‐dispersity poly(MAM)‐block‐poly(LAM). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 216–227  相似文献   

10.
可逆加成-断裂链转移(reversible addition-fragmentation chain transfer,RAFT)聚合是一种有效的可控/活性自由基聚合方法,在功能型高分子的制备中有广泛的应用,RAFT聚合的关键就在于选择合适的RAFT链转移剂。基于环保无害的要求,水溶性RAFT链转移剂的制备就至关重要。本文介绍了RAFT聚合的机理,综述了水溶性RAFT链转移剂的制备及应用进展,探讨出RAFT链转移剂水溶性的作用机理,一方面是极性基团的作用,另一方面是离子键氢键等的作用,这对水溶性RAFT链转移剂的制备有一定的启发。大分子RAFT链转移剂分子中常含有亲水基团和疏水基团,具有一定的分散作用,在水相条件下不仅可以通过扩链反应制备窄分子量分布的嵌段共聚物,还可以制备出微纳米凝胶。  相似文献   

11.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   

12.
以甲基丙烯酸(MAA)、甲基丙烯酸苄基酯(BZMA)、甲基丙烯酸羟乙酯(HEMA)和丙烯酸正丁酯(BA)为共聚单体,偶氮二异丁腈(AIBN)为引发剂,2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸(DMP)为链转移试剂,采用可逆加成-断裂链转移聚合(RAFT)制备了甲基丙烯酸酯共聚物(PMBBH)。利用傅立叶红外光谱(FT-IR)、核磁共振氢谱(1HNMR)和凝胶渗透色谱(GPC)对共聚物的结构进行了表征。以共聚物PMBBH为基体树脂制备了负性光致抗蚀剂,考察了PMBBH的分子量对光致抗蚀剂分辨率的影响。结果表明,以数均分子量为5.45×103 g/mol,重均分子量为7.79×103 g/mol的PMBBH-2作为基体树脂时,该光致抗蚀剂得到的图像轮廓清晰,图形分辨率可达50 μm。  相似文献   

13.
14.
Summary: A novel reversible addition‐fragmentation transfer (RAFT) agent, 10‐carboxylic acid‐10‐dithiobenzoate‐decyltrimethylammonium bromide (CDDA), was synthesized and intercalated into montmorillonite (MMT). Successively, the CDDA‐intercalated MMT was used as RAFT agent in the in situ RAFT polymerization for preparation of the polystyrene/MMT nanocomposites. After separation of MMT, the polymers obtained have predictable molecular weight and narrow polydispersity. XRD spectra and TEM images of the nanocomposites demonstrated exfoliated structure. Thermal stability of the composites has been noticeably improved.

  相似文献   


15.
Most commercial dressings with moderate to high exudate uptake capacities are mechanically weaker and/or require a secondary dressing. The current research article focuses on the development of hydrogel-based wound dressings combining mechanical strength with high exudate absorption capacities using acrylate-endcapped urethane-based precursors (AUPs). AUPs with varying poly(ethylene glycol) backbone molar masses (10 and 20 kg mol−1) and endcap chemistries are successfully synthesized in toluene, subsequently processed into UV-cured hydrogel sheets and are benchmarked against several commercial wound dressings (Hydrosorb, Kaltostat, and Mepilex Ag). The AUP materials show high gel fractions (>90%) together with strong swelling degrees in water, phosphate buffered saline and simulated wound fluid (12.7–19.6 g g−1), as well as tunable mechanical properties (e.g., Young's modulus: 0.026–0.061 MPa). The AUPs have significantly (p < 0.05) higher swelling degrees than the tested commercial dressings, while also being mechanically resistant. The elasticity of the synthesized materials leads to an increased resistance against fatigue. The di- and hexa-acrylated AUPs show excellent in vitro biocompatibility against human foreskin fibroblasts, as evidenced by indirect MTS assays and live/dead cell assays. In conclusion, the processed AUP materials demonstrate high potential for wound healing application and can even compete with commercially available dressings.  相似文献   

16.
17.
Adhesion and proliferation of cells are often suppressed in rigid hydrogels as gel stiffness induces mechanical stress to embedded cells. Herein, the composite hydrogel systems to facilitate high cellular activities are described, while maintaining relatively high gel stiffness. This unusual property is obtained by harmonizing gelatin‐poly(ethylene glycol)‐tyramine (GPT, semisynthetic polymer) and gelatin‐hydroxyphenyl propionic acid conjugates (GH, natural polymer) into hydrogels. A minimum GH concentration of 50% is necessary for cells to be proliferative. GPT is utilized to improve biological stability (>1 week) and gelation time (<20 s) of the hydrogels. These results suggest that deficiency in cellular activity driven by gel stiffness could be overcome by finely tuning the material properties in the microenvironments.

  相似文献   


18.
This work presents the synthesis of a polymeric mixed-mode solid-phase extraction (SPE) sorbent for clean-up and isolation of caffeine from black and green tea samples. The material was synthesized by a simple thermally initiated copolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate. Further functionalization was executed with histidine (HIS). Functional groups were investigated by attenuated total-reflection infrared spectroscopy. Furthermore, nitrogen sorption porosimetry was executed and revealed surface areas of 90 m2 g??1. Adsorption capacities for caffeine were compared between functionalized and non-modified polymers and showed maximum capacities of 3.01 and 4.82 mg g??1 polymer, respectively. Time adsorption profiles revealed an equilibrium adsorption after 15 min. The proposed polymer was used for SPE of black and green tea extracts and showed excellent clean-up efficiency for isolation of caffeine with recoveries ranging from 89 to 93%. When compared to commercially available Oasis HLB, the HIS-functionalized polymer demonstrated a distinctly better performance for clean-up. Finally, the proposed method was validated regarding international (ICH) guidelines and regulations.  相似文献   

19.
Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin—sodium alginate (SA, 1.5% solution)—and a synthetic polymer—poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)—in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea—5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.  相似文献   

20.
Nitroxide‐mediated controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) is achieved using the copolymerization method with a small initial concentration of acrylonitrile (AN, 5–16 mol%)) or styrene (S, 5–10 mol%). The polymerization is mediated by Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethyl propyl) nitroxide (SG1)‐based BlocBuilder unimolecular alkoxyamine initiator modified with an N‐succinimidyl ester group (N‐hydroxysuccinimide‐BlocBuilder). As little as 5% molar feed of acrylonitrile results in a controlled polymerization, as evidenced by a linear increase in number average molecular weight M n with conversion and dispersities (? ) as low as 1.30 at 80% conversion in N ,N‐dimethylformamide (DMF) at 85 °C. With S as the controlling comonomer, higher initial S composition (≈10 mol%) is required to maintain the controlled copolymerization. Poly(HEMA‐ran‐AN)s with M n ranging from 5 to 20 kg mol?1 are efficiently chain extended using n‐butyl methacrylate/styrene mixtures at 90.0 °C in DMF, thereby showing a route to HEMA‐based amphiphilic block copolymers via nitroxide‐mediated polymerization.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号