共查询到20条相似文献,搜索用时 15 毫秒
1.
Vangeyte P Leyh B Heinrich M Grandjean J Bourgaux C Jérôme R 《Langmuir : the ACS journal of surfaces and colloids》2004,20(20):8442-8451
The associative behavior of monodisperse diblock copolymers consisting of a hydrophilic poly(ethylene oxide) block and a hydrophobic poly(epsilon-caprolactone) or poly(gamma-methyl-epsilon-caprolactone) block has been studied in aqueous solution. Copolymers have been directly dissolved in water. The solution properties have been studied by surface tension, in relation to mesoscopic analyses by NMR (self-diffusion coefficients), transmission electron microscopy, and small-angle neutron and X-ray scattering. The experimental results suggest that micellization occurs at low concentration (approximately 0.002 wt %) and results in a mixture of unimers and spherical micelles that exchange slowly. The radius of the micelles has been measured (ca. 11 nm), and the micellar substructure has been extracted from the fitting of the SANS data with two analytical models. The core radius and the aggregation number change with the hydrophobic block length according to scaling laws as reported in the scientific literature. The poly(ethylene oxide) blocks are in a moderately extended conformation in the corona, which corresponds to about 25% of the completely extended chain. No significant modification is observed when poly(gamma-methyl-epsilon-caprolactone) replaces poly(epsilon-caprolactone) in the diblocks. 相似文献
2.
Vangeyte P Leyh B Rojas OJ Claesson PM Heinrich M Auvray L Willet N Jérôme R 《Langmuir : the ACS journal of surfaces and colloids》2005,21(7):2930-2940
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface. 相似文献
3.
Joncheray TJ Denoncourt KM Meier MA Schubert US Duran RS 《Langmuir : the ACS journal of surfaces and colloids》2007,23(5):2423-2429
The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers. 相似文献
4.
Vangeyte P Leyh B Auvray L Grandjean J Misselyn-Bauduin AM Jérôme R 《Langmuir : the ACS journal of surfaces and colloids》2004,20(21):9019-9028
Interaction of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers with anionic sodium dodecyl sulfate (SDS) has been investigated in aqueous solution. Formation of mixed micelles has been confirmed by surface tension measurements, whereas the influence of the surfactant on the copolymer self-assembling has been studied by measurement of the 1H NMR self-diffusion coefficients and by small-angle neutron scattering. As a rule, the surfactant decreases the heterogeneity of the micellar structures formed by the copolymer in water. Moreover, increasing the content of SDS results in the increasingly more important extension of the poly(ethylene oxide) (PEO) corona chains and the copolymer micelle deaggregation. The stability of the micelles against SDS increases with the length of the hydrophobic block. Preliminary two-dimensional NMR measurements with nuclear Overhauser enhancement have confirmed the spatial vicinity between SDS and the constitutive blocks of the copolymer. 相似文献
5.
A study is presented of the preparation of gold nanoparticles incorporated into biodegradable micelles. Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) copolymer was synthesized by ring-opening polymerization, and the hydroxyl end group of the PCL block was modified with thioctic acid using dicyclohexyl carbodiimide as the coupling reagent. The PEO-b-PCL-thioctate ester (TE) thus obtained was used in a later step to form monolayer protected gold nanoparticles via the thioctate spacer. Gold nanoparticles stabilized with the PEO-b-PCL block (named Au/Block (x/y), where x/y is the mole feed ratio between HAuCl4 and PEO-b-PCL-TE) were prepared and analyzed. Au/Block (1/1), Au/Block (2/1), and Au/Block (3/1) nanoparticles were found to form stable dispersions in the organic solvents commonly used to dissolve the unlabeled block copolymer. The average diameter of the nanoparticles was determined by transmission electron microscopy (TEM) and found to be 6+/-2 nm. Au/Block (4/1) nanoparticle dispersions in organic solvents, on the other hand, were not stable and produced large gold clusters (50-100 nm). Cluster formation was attributed to the low grafting density of the block copolymer, which facilitates agglomeration. For Au/Block (12/1), along the same trend, only an insoluble product was isolated. Micelles in water were prepared by the slow addition of the dilute Au/Block solution in dimethylformamide into a large excess of water with vigorous stirring. Au/Block (1/1) and Au/Block (2/1) formed nanosized structures of 5-7 nm. TEM images of stained Au/Block (1/1) micelles, made in water, clearly showed the formation of core-shell structures. Au/Block (3/1) micelles, on the other hand, were not stable and large agglomerates a few microns in size were observed. The study focuses on the synthesis, characterization, and aggregation behavior of gold-loaded PEO-b-PCL block copolymer micelles, a potential system for drug delivery in conjunction with tissue and subcellular localization studies. 相似文献
6.
Vangeyte P Leyh B De Clercq C Auvray L Misselyn-Bauduin AM Jérôme R 《Langmuir : the ACS journal of surfaces and colloids》2005,21(17):7710-7716
Upon addition of silica to aqueous solutions of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers (PEO-b-PCL) and sodium dodecyl sulfate (SDS), adsorption of the solutes occurs at the silica-water interface. The amount of the adsorbed constituents has been measured by the total concentration depletion method. Small-angle neutron scattering experiments (SANS) have been carried out to investigate the structure of the adsorbed layer. Although SDS is not spontaneously adsorbed onto hydrophilic silica, adsorption is observed in the presence of PEO-b-PCL diblocks, in relation to the relative concentration of the two compounds. Conversely, SDS has a depressive effect on the adsorption of the copolymer, whose structure at the interface is modified. Copolymer desorption is however never complete at high SDS content. These observations have been rationalized by the associative behavior of PEO-b-PCL and SDS in water. 相似文献
7.
Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers 总被引:1,自引:0,他引:1
Guillemet B Faatz M Gröhn F Wegner G Gnanou Y 《Langmuir : the ACS journal of surfaces and colloids》2006,22(4):1875-1879
Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation. 相似文献
8.
以原子转移自由基偶联法合成了多臂星形聚合物S-PEO和星形杂臂共聚物PEO-PS。以傅立叶红外光谱(FT-IR)和核磁共振(1H NMR)分析方法确定了产物的结构。以GPC分析测试了产物的分子量和分子量分布。GPC分析结果表明所得聚合物分子量增大,分子量分布窄,偶联反应效率可高达99%以上。 相似文献
9.
The present paper discusses block copolymers with segments of either poly(ethylene oxide), poly(propylene oxide), or mixtures of poly(ethylene oxide)/poly(propylene oxide) and monodisperse aramide segments. The length of the polyether segments as well as the concentration of polyethylene oxide was varied. The synthesized copolymers were analyzed by DSC, FTIR, AFM and DMTA. In addition, the hydrophilicity was studied.The crystallinity of the monodisperse aramide segments was found to be high and the crystals, dispersed in the polyether phase, displayed a nano-ribbon morphology. The PEO segments were able to crystallize and this crystalline phase reduced the low-temperature flexibility. The PEO crystallinity and melting temperature could be strongly reduced by copolymerization with PPO segments. By using mixtures of PEO and PPO segments, hydrophilic copolymers with decent low-temperature properties could be obtained. 相似文献
10.
H. P. de Oliveira J. Rieumont C. Nogueiras D. Souza R. Sánchez 《Journal of Thermal Analysis and Calorimetry》2011,103(2):443-451
The thermal degradation of an amphiphilic block copolymer poly(ethylene)-b-poly(ethylene oxide)-carboxylic acid terminated
(PE-b-80%PEO–CH2COOH) and its salt obtained as intermediary product from chemical oxidation of the end group of poly(ethylene)-b-poly(ethylene
oxide) (PE-b-80%PEO) has been studied using a thermogravimetric mass spectrometry (TG/MS) coupled system. The isothermal fragmentation
of PE-b-80%PEO–CH2COOH showed a more complex fragmentation pattern than PE-b-80%PEO owing to the simultaneous occurrence of the polyether block
and the carboxylic end group fragmentations. This led to the appearance of four overlapping ion current peaks of fragments
with m/z 44 and two peaks relative to m/z 18 at different times by acid-terminated copolymer. For the PE-b-80%PEO copolymer, two ion current peaks associated to m/z 44 and one large peak relative to m/z 18 fragments were detected. The intermediary product (PE-b-80%PEO–CH2COO− K+) showed differences related to the fragmentation behavior. It has more defined ion current signals and presented characteristic
peaks attributed to m/z 43 fragment at the very beginning of the thermal degradation process, which it not detected in the acid copolymer. 相似文献
11.
Byeongmoon Jeong Doo Sung Lee Jeong‐In Shon You Han Bae Sung Wan Kim 《Journal of polymer science. Part A, Polymer chemistry》1999,37(6):751-760
The gel to sol transition of aqueous solutions of di‐ and triblock copolymers consisting of poly(ethylene oxide) and biodegradable polyesters was studied as a function of temperature. The molecular weight and the chemical composition of the biodegradable blocks, (poly(l ‐lactic acid), poly(dl ‐lactic acid), poly(dl ‐lactic acid‐co‐caprolactone), and poly(dl ‐lactic acid‐co‐glycolic acid)) were varied to investigate the effects of chain packing and relative hydrophobicity on the gel to sol transition. The block copolymers studied formed micelles at lower concentrations in water, while the concentrated solutions experienced a gel to sol transition as the temperature increased. Further increase in temperature resulted in the precipitation of polymers. With increasing molecular weight and chain packing tendency of hydrophobic biodegradable block, the gel to sol transition occurred at lower concentrations and the transition temperature ranged from 0°C to over 90°C in a relatively narrow concentration range. The results obtained in this study confirm the relationship between gelation properties and polymer structure, as well as provide more information for these polymers in drug delivery applications. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 751–760, 1999 相似文献
12.
Sebastian Mendrek Aleksandra Mendrek Hans-Juergen Adler Andrzej Dworak Dirk Kuckling 《Colloid and polymer science》2010,288(7):777-786
Temperature-sensitive poly(glycidol)-b-poly(N-isopropylacrylamide) block copolymers (PGl55PNIPAAmy) were synthesised and their aqueous solutions investigated by different methods including differential scanning calorimetry
(DSC), UV-VIS spectroscopy as well as dynamic and static light scattering. The cloud point temperature (T
c) depended on the composition of the investigated block copolymers and increased with decreasing length of the PNIPAAm block
in PGl55PNIPAAmy copolymers. In contrast, the enthalpy of phase separation of PNIPAAm segments measured by DSC decreased with decreasing length
of the PNIPAAm block in the polymer. These findings can be correlated with the behaviour of homo-PNIPAAm with similar molecular
weights indicating that the influence of PGl on the local environment and phase separation of PNIPAAm chains is similar to
the influence observed for PNIPAAm chains bearing different low molecular weight end group. Using DLS measurement, it was
shown that the aggregation process depended on the PGl/PNIPAAm block ratio. If the PGl/PNIPAAm ratio was low, stable core-shell
aggregates were formed. In contrast, the tendency to formation of large unstable, loose aggregates was observed for copolymers
with high PGl/PNIPAAm ratio. 相似文献
13.
C. P. Novakov E. Haladjova N. Dishovsky A. Hirao W. Meier C. B. Tsvetanov 《Colloid and polymer science》2010,288(7):795-807
Anionic copolymerization and Williamson reaction of PS-co-PD (d-isoprene (I) or butadiene (B)) prepolymers (bearing hydroxyl or benzyl bromide end groups) and ethylene oxide or mono-methyl
poly(ethylene glycol) (PEGs) were used to prepare a series of PS-co-PD-b-PEO amphiphilic copolymers. Investigations on the association and self-assembly of copolymers in dilute organic and in mixed
organic/water solutions have been carried out both by light scattering and microscopic measurements. Nanosized and microsized
species have been observed. Their shape depends on the hydrophobic/hydrophilic blocks ratio as well as on the solvent composition.
Attempts on stabilizing the morphology of the aggregates/micelles have been made by UV-induced cross-linking of diene entities.
It has been found that in some experiments, the stabilization proceeds throughout morphological rearrangement determined by
the solvent nature and by the cross-linking protocol. 相似文献
14.
B. García‐Gaitn M. Del P. Prez‐Gonzlez A. Martínez‐Richa G. Luna‐Brcenas S. M. Nuo‐Donlucas 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4448-4457
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004 相似文献
15.
A series of poly(propylene oxide)-b-poly(L-lysine) (PPO-PK) block copolymers were synthesized using Huisgen's 1,3-dipolar cycloaddition, and the solution self-assembly was studied using transmission electron microscopy, circular dichroism spectroscopy, and dynamic and static light scattering techniques. In contrast to previous studies of poly(lysine)-based block copolymers, PPO-PK exhibits a significant shift in the pH associated with the helix-coil transition of the poly(lysine) block, potentially a result of decreased hydrophobicity in the core PPO block. Given the proximity of the lower critical solution temperature of the PPO block, these materials exhibit both pH and temperature-responsive (i.e., "schizophrenic") self-assembly, the latter of which was interpreted in terms of changes in the second osmotic virial coefficient. Finally, the vesicle morphology obtained from these polymers was studied for the propensity in drug encapsulation and passive release. 相似文献
16.
Sachl R Uchman M Matĕjícek P Procházka K Stĕpánek M Spírková M 《Langmuir : the ACS journal of surfaces and colloids》2007,23(6):3395-3400
Aqueous solutions of self-assembled nanoparticles formed by biocompatible diblock copolymers of poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-PEO) with the same molar mass of the PEO block (5000 g mol-1) and three different molar masses of the PCL block (5000, 13 000, and 32 000 g mol-1) have been prepared by a fast mixing the copolymer solution in a mild selective solvent, tetrahydrofuran (THF)/water, with an excess of water, that is, by quenching the reversible micellization equilibrium, and a subsequent removal of THF by dialysis of the water-rich solution against water. The prepared nanoparticles have been characterized by static and dynamic light scattering and atomic force microscopy imaging. It was found that stable monodisperse nanoparticles are formed only if the initial mixed solvent contained 90 vol % THF. The results show that the prepared nanoparticles are spherical vesicles with relatively thick hydrophobic walls, that is, spherical core/shell nanoparticles with the hollow core filled with the solvent. 相似文献
17.
The self-diffusion of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers dissolved in deuterated water was investigated by means of pulsed field gradient NMR (PFG-NMR). The polymer forms micelles in the solution and, with increasing temperature, clouding and phase demixing occurs. The self-diffusion coefficient indicates the association of the polymer molecules in the vicinity of the cloud point because of its maximum with increasing temperature. Above the cloud point, two kinds of diffusing species are observed due to phase separation. The faster diffusing species is attributed to the polymer-poor phase. The self-diffusion coefficient of the polymer-rich phase species decreases with increasing temperature above the cloud point due to further association and dehydration. The correlation length of the diffusing associates, calculated from the self-diffusion coefficient and the viscosity by means of the Stokes-Einstein equation is nearly independent of temperature and concentration up to 30 wt-% polymer concentration. The correlation length is about 1.4 nm. It shows a slight maximum at the cloud point. 相似文献
18.
Poly(epsilon-caprolactone) (PCL) samples with number average molar masses (Mn) ranging from 3.5 to 36 kg.mol-1 exhibit molar mass dependent nucleation and growth of crystals, crystal morphologies, and melting properties at a temperature of 22.5 degrees C in Langmuir films at the air/water (A/W) interface. At surface area per monomer, A, greater than approximately 0.37 nm2.monomer-1, surface pressure, Pi, and surface elasticity exhibit molar mass independent behavior that is consistent with a semidilute PCL monolayer. In this regime, the scaling exponent indicates that the A/W interface is a good solvent for the liquid-expanded PCL monolayers. Pi-A isotherms show molar mass dependent behavior in the vicinity of the collapse transition, i.e., the supersaturated monolayer state, corresponding to the onset of the nucleation of crystals. Molar mass dependent morphological features for PCL crystals and their subsequent crystal melting are studied by in situ Brewster angle microscopy during hysteresis experiments. The competition between lower segmental mobility and a greater degree of undercooling with increasing molar mass produces a maximum average growth rate at intermediate molar mass. This behavior is analogous to spherulitic growth in bulk PCL melts. The plateau regions in the expansion isotherms represent the melting process, where the polymer chains continuously return to the monolayer state. The magnitude of Pi for the plateau during expansion decreases with increasing molar mass, indicating that the melting process is strongly molar mass dependent. 相似文献
19.
《Comptes Rendus Chimie》2017,20(7):724-729
Poly(butadiene)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PBP2VPPEO) triblock copolymers of various compositions and molecular weights were prepared by sequential anionic polymerization. Their micellization behavior was examined in heptane, which is a selective solvent for PB whereas P2VP and PEO are insoluble. Dynamic light scattering and viscometry were used to determine the basic micellar characteristics, such as aggregation number, micellar sizes, and polydispersity, which were correlated to the molecular characteristics of the copolymers. Such ABC triblock copolymers form structured micelle-like nanoparticles having a core–shell morphology with hydrodynamic diameters in the range of 45–75 nm. 相似文献
20.
Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution 总被引:6,自引:0,他引:6
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations. 相似文献