首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 184 毫秒
1.
以NH4Cl为气体模板吹制双氰胺制备g-C3N4纳米片, 并将其负载于Pt/TiO2纳米管阵列(Pt/TiO2 NTs)上, 制备了一种新型的Z型g-C3N4/Pt/TiO2NTs复合电极材料. 通过扫描电子显微镜、 X射线衍射和X射线光电子能谱对该材料的结构进行了表征, 采用电化学和光电化学方法研究了材料的性能. 研究结果显示, 在可见光照射下, g-C3N4/Pt/TiO2 NTs复合材料具有高效的光电氧化甲醇的性能. 该复合材料的高性能主要归因于以下两点: (1) g-C3N4与Pt/TiO2NTs的结合有效扩展了其在可见光范围的吸收; (2) Z型电荷转移保留了具有强氧化能力的空穴和强还原能力的电子, 从而使光生中间体作用于电催化过程增强了甲醇氧化效率.  相似文献   

2.
载铂石墨氮化碳(g-C3N4)是一种较好的可见光下催化析氢光催化剂.但催化水裂解需要牺牲电子供体,如三乙醇胺等.目前,无牺牲剂条件下g-C3N4的催化析氢仍是一个挑战.本文通过尿素热处理制备了氮化碳纳米片(NS-C3N4),并研究了其在可见光(λ>400 nm)下利用可逆电子给体无牺牲剂条件下析氢的光催化活性.在含有I-, Fe2+或[Fe(CN)6]4-的水溶液中,负载铂的NS-C3N4上无H2产生,用CrOx改性Pt/NS-C3N4的光催化剂上可观察到H2的析出.透射电镜和能量色散X射线光谱结果表明,在NS-C3N4上形成了Pt/CrOx核壳结...  相似文献   

3.
石墨氮化碳(g-C3N4)是一种窄带隙的n型半导体材料,具有可见光降解有机污染物能力;凹凸棒土(ATP)具有很强的表面活性和吸附能力,可作为催化剂的载体。我们以g-C3N4和ATP杂化材料(ATP/g-C3N4)为基础,通过简单的化学还原法将纳米Pt颗粒沉积到ATP/g-C3N4表面,随后利用纳米金属Pt颗粒催化苯胺无电聚合,促使聚苯胺(PANI)在ATP/g-C3N4表面或孔道中原位生成,获得ATP/g-C3N4-Pt/PANI复合材料。以阴离子染料甲基橙(MO)为模型体系,考察了复合材料的可见光催化性能。研究表明,共轭结构的PANI和g-C3N4在复合材料中保持完好,说明其具有良好的兼容性。由于多组分材料之间的协同效应,使得ATP/g-C3N4  相似文献   

4.
通过将BiOBr纳米片与g-C3N4复合,然后原位还原,合成了具有纳米花状结构的三元异质结光催化剂g-C3N4/Bi/BiOBr.对g-C3N4/Bi/BiOBr的结构、形貌、元素价态和光学性能等进行了表征和研究.评估了g-C3N4/Bi/BiOBr对气体甲醛的光催化降解活性. g-C3N4/Bi/BiOBr在可见光照射下降解甲醛的活性与g-C3N4、 BiOBr单体和g-C3N4/BiOBr二元复合物相比显著提高. 20%-g-C3N4/Bi/BiOBr复合物可以在60 min内(λ> 400 nm)降解80%的气态甲醛(初始浓度0.16 mg·L-1).  相似文献   

5.
采用简单的化学还原法在g-C3N4纳米片上原位合成了一种小尺寸CoNi双金属助催化剂并研究了其光催化活性。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)、电化学阻抗(EIS)等手段对制备的CoNi/g-C3N4的理化性能进行了表征。光催化降解RhB实验表明,CoNi双金属助催化剂能有效提高g-C3N4中光生载流子的分离效率,从而提高光催化活性。当CoNi物质的量比为1:1时,CoNi/gC3N4的催化活性最高,其降解速率为0.01633 min-1,在可见光照射下比g-C3N4提高3.9倍,该光催化剂在五次循环后仍能保持良好光催化活性,该反应的主要活性物种为超氧自由基(·O2-)。  相似文献   

6.
黄艳  傅敏  贺涛 《物理化学学报》2015,31(6):1145-1152
用简单的超声分散法合成了具有可见光响应的类石墨氮化碳(g-C3N4)/BiVO4复合光催化剂. 采用X射线衍射(XRD), X射线光电子能谱(XPS), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 紫外-可见(UV-Vis)分光光谱, 傅里叶红外变换(FTIR)光谱, 荧光发射谱(PL)和光电流响应等技术对所制备催化剂进行相关表征. 通过可见光下(λ> 420 nm)光催化还原CO2的性能来评价样品的光催化活性, 发现不同复合比的催化剂中, 含40% (w) g-C3N4的复合催化剂表现出最高的光催化活性, 其催化活性分别为纯g-C3N4纳米片和纯BiVO4的催化活性的2倍和4倍.光催化活性增加的主要原因是g-C3N4和BiVO4之间形成了异质结, 且相互间能级匹配, 有利于光生电子和空穴的分离.  相似文献   

7.
利用界面聚合法, 成功将聚苯胺(PANI)纳米棒生长在石墨型氮化碳(g-C3N4)片层上, 制备了PANI/g-C3N4复合光催化剂. 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、热重分析(TGA)和电化学工作站表征手段考察样品的结构、形貌及性能, 以可见光催化降解亚甲基蓝为模型考察样品的可见光催化活性. 实验结果表明, 在复合材料中的g-C3N4能很好地分散成层状, 并在层间与PANI纳米棒形成复合物, 这种特殊的复合结构不仅利于片状g-C3N4对PANI链段运动的限制及对其降解产物的物理屏蔽, 从而可以提高复合材料的热稳定性, 而且具有优越的可见光催化性能.  相似文献   

8.
从层状化合物获得的纳米片是一类新型纳米结构材料,这种二维各向异性的纳米甚至亚纳米级的材料具有独特的物理化学性能,其中最好的一个例证就是从石墨烯C3N4到石墨烯C3N4纳米片的转变。通过高温氧化热刻蚀方法将体相g-C3N4剥离成g-C3N4纳米片,应用于染料敏化可见光分解水产氢,表现出了较体相g-C3N4高于2.6倍的产氢速率。通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、Brunauer-Emmett-Teller(BET)、荧光光谱和光电化学等表征研究了g-C3N4纳米片的结构及曙红(EY)和g-C3N4纳米片之间的电子迁移过程。热剥离后的g-C3N4纳米片具有较高的比表面积,不仅可以更为有效地吸附染料分子,还因其量子限域效应大大增强了光生电荷的分离效率和电子转移效率,改善了电子沿平面方向的传输能力以及光生载流子的寿命,从而显著提高g-C3N4纳米片的光催化产氢活性。  相似文献   

9.
随着化石燃料快速消耗和环境污染日益严峻,高效光催化产氢技术作为最有前景的绿色能源技术之一而备受关注.作为典型的2D纳米片,g-C3N4具有很多适合应用在光催化领域的特性,如可见光效应、大比表面积和环境友好等,但单一g-C3N4的载流子复合率高,光催化性能不佳.研究者尝试负载贵金属(如Pt,Ag,Au等),利用贵金属功函数较高,可以快速捕获g-C3N4表面的光生电子,从而有效抑制光生载流子的复合;但其成本较高,限制了该技术的产业化.目前类金属材料(MoO2,NbO2,WO2等)不仅表现出类似贵金属的特性,且价格低廉,有望替代贵金属.因此,引入类金属助催化剂是实现高载流子浓度和宽光谱照射下强光子吸收的好方法.本文设计并制备了类金属WO2/g-C3N4纳米复合物,其表现出了较好的光催化性能:在可见光照射2h,4 wt%WO...  相似文献   

10.
光催化氧化是一种应用前景良好的环境治理技术.与絮凝、物理吸附和化学氧化等常见的方法相比,光催化氧化具有环境友好、氧化完全、方便和廉价等优势.特别是可见光光催化氧化,可利用太阳能中占比最高的可见光,在应用中更具优势.因而,探索可见光响应性能优异的光催化剂一直是光催化氧化领域的一个重要研究内容.硒化铋(Bi2Se3)是一种带隙(带隙宽度在0.3~1.3 e V)非常窄的半导体,能吸收全部波长范围的可见光和近红外光.此外,Bi2Se3还具有独特的金属表面态,其表面具有良好的导电性.这些特性使其在可见光光催化氧化领域具有很大的应用潜力.然而,由于Bi2Se3价带位置高,氧化能力很弱,其价带上的空穴在光催化反应中难以被消耗,导致空穴大量累积,并迅速与光生电子复合,大幅降低了Bi2Se3的光催化性能.因此,一直以来,Bi2Se3很少被用于光催化反应.如何充分利用Bi2Se3的光响应优势,制备出性能优异的光催化剂,仍是具有挑战性和吸引力的研究方向.本文采用预先制备的Bi2O3/g-C3N4复合物作为前驱体,通过原位转化的方法,将前驱体置于热的Se蒸汽中,使前驱体上的Bi2O3与Se蒸汽反应,完全转化为Bi2Se3纳米颗粒,从而制得Bi2Se3/g-C3N4复合光催化剂(Bi2Se3含量约为4 wt%).透射电镜结果表明,所形成的Bi2Se3纳米颗粒较均匀地分布在g-C3N4表面.表面功函数分析发现,Bi2Se3与g-C3N4结合后,它们的费米能级分别由原来的-0.55和-0.18 e V变为平衡时的-0.22 e V,可形成指向g-C3N4的内建电场,有利于形成梯型(S型)异质结.在此基础上,能级位移、荧光分析、结构计算和反应自由基测试等结果表明,Bi2Se3和g-C3N4之间形成了S型异质结.在可见光光催化降解苯酚的实验中,所制备的Bi2Se3/g-C3N4复合物的光催化活性明显优于单一的Bi2Se3和g-C3N4.结合比表面、孔结构、光吸收和荧光等对比分析,认为Bi2Se3/g-C3N4的这种S型异质结构在其光催化活性增强中起到了关键作用.在光照条件下,其g-C3N4导带中光生电子向Bi2Se3的价带迁移,并与光生空穴复合,从而使Bi2Se3导带上可保留更多的高活性光生电子参与光催化反应,由此Bi2Se3/g-C3N4的光催化活性增强.循环性能测试和光还原实验结果表明,所制备的Bi2Se3/g-C3N4复合光催化剂具有良好的稳定性.本文工作为高可见光吸收的光催化剂制备和性能增强提供了新途径和新视野.  相似文献   

11.
刘优昌  王亮 《燃料化学学报》2018,46(9):1146-1152
以三聚氰胺作为合成g-C_3N_4纳米片的前躯体,以Bi(NO3)3·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C_3N_4/Bi OBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C_3N_4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UVvis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C_3N_4/BiOBr光催化降解罗丹明B(Rh B)的效率高于单体g-C_3N_4和BiOBr,并对g-C_3N_4/BiOBr增强可见光催化RhB机理进行解释。  相似文献   

12.
Since Fujishima and Honda demonstrated the photoelectrochemical water splitting on TiO2 photoanode and Pt counter electrode, photocatalysis has been considered as one of the most promising technologies for solving both the problems of environmental pollution and energy shortage. This process can effectively use solar energy, the most abundant energy resource on the earth, to drive various catalytic reactions, such as water splitting, CO2 reduction, organic pollutant degradation, and organic synthesis, for energy generation and environmental purification. Except for the various metal-based semiconductors, such as metal oxides, metal sulfides, and metal oxynitrides, developed for photocatalysis, graphitic carbon nitride (g-C3N4) has attracted significant attention in the recent years because of its earth abundancy, non-toxicity, good stability, and relatively narrow band gap (2.7 eV) for visible light response. However, g-C3N4 suffers from insufficient absorption of visible light in the solar spectrum and rapid recombination of photogenerated electrons and holes, thus resulting in low photocatalytic activity. Until now, various strategies have been developed to enhance the photocatalytic activity of g-C3N4, including element doping, nanostructure and heterostructure design, and co-catalyst decoration. Among these methods, element doping has been found to be very effective for adjusting the unique electronic and molecular structures of g-C3N4, which could significantly expand the range of photoresponse under visible light and improve the charge separation. Especially, non-metal doping has been well investigated frequently to improve the photocatalytic activity of g-C3N4. The non-metal dopants commonly used for the doping of g-C3N4 include oxygen (O), phosphorus (P), sulfur (S), boron (B), and halogen (F, Cl, Br, I) and also carbon (C) and nitrogen (N) (for self-doping), as they are easily accessible and can be introduced into the g-C3N4 framework through different physical and chemical synthetic methods. In this review article, the structural and optical properties of g-C3N4 is introduced first, followed by a brief introduction to the modification of g-C3N4 as photocatalysts. Then, the progress in the non-metal doped g-C3N4 with improved photocatalytic activity is reviewed in detail, with the photocatalytic mechanisms presented for easy understanding of the fundamentals of photocatalysis and for guiding in the design of novel g-C3N4 photocatalysts. Finally, the prospects of the modification of g-C3N4 for further advances in photocatalysis is presented.  相似文献   

13.
采用第一性原理密度泛函理论结合周期性平板模型模拟研究了Pt4团簇吸附单层石墨相氮化碳(g-C3N4)的几何结构和电子性质,以及氧气在其表面上的吸附行为。同时,对比分析了氧气在纯净的石墨相氮化碳和Pt4团簇上的吸附行为。计算结果表明, Pt4团簇吸附在3-s-三嗪环石墨相氮化碳表面,并与四个边缘氮原子成键,形成两个六元环时为最稳定构型。Pt4团簇倾向于吸附在三嗪环石墨相氮化碳的空位并与邻近三个氮原子成键。由于Pt与N原子较强的杂化作用,以及金属与底物之间较多电子转移增强了Pt4团簇吸附g-C3N4的稳定性。另外,对比分析了氧气在纯净的g-C3N4和金属吸附的g-C3N4上吸附行为,发现金属原子的加入促进了电子转移,同时拉长了O―O键长。Pt4吸附3-s-三嗪环g-C3N4比Pt4吸附三嗪环g-C3N4表现出微弱的优势,表现出明显的基底扭曲以及较大的吸附能。这些结果表明,化学吸附通过调节电子结构和表面性质增强催化性能的较好方法。  相似文献   

14.
本文通过在双氰胺前驱体中添加聚乙二醇,在缩聚过程实现碳掺杂形成含氮空位的g-C3N4光催化剂。通过X射线衍射(XRD)、红外光谱(FTIR)、光电子能谱(XPS)、紫外-可见吸收光谱(UV-Vis)和荧光谱(FL)等表征手段,考察了原位聚合碳掺杂形成氮空位对g-C3N4物相结构、组分与化学态、光吸收性能及光催化活性的影响。研究结果表明,采用该方法可实现原位聚合碳掺杂,有效拓展g-C3N4的可见光吸收至850 nm,在紫外-可见光与可见光照射下光降解RhB及光催化产氢性能均显著提高,尤其可见光条件下的性能提升更为显著。  相似文献   

15.
Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O2•−), hydroxyl radicals (•OH) and holes could increase the photocatalytic activity of Cu/g-C3N4 materials.  相似文献   

16.
构建具有高效电荷迁移效率和丰富活性位点的异质结光催化体系是提升光芬顿反应速率的有效途径。本研究通过简单的水热法合成了2D/2D结构的α-Fe2O3/g-C3N4 S型异质结光芬顿催化剂,并使用X射线衍射仪技术(XRD)、透射电子显微镜(TEM)、傅立叶变换红外吸收光谱(FTIR)和紫外-可见吸收光谱(UV-Vis)等分析手段对α-Fe2O3/g-C3N4的晶体结构、微观结构、化学组分和光学性质进行了详细的表征。通过在可见光照射下降解四环素,评测了α-Fe2O3/g-C3N4的催化活性。结果表明,光催化反应与芬顿反应的协同作用使α-Fe2O3/g-C3N4 (1 : 1)展现出了优异的光芬顿催化活性:在可见光照射下,仅加入微量的双氧水便可辅助催化剂在20 min内对四环素的降解率达到78%,其降解速率分别是单一的α-Fe2O3和g-C3N4的3.5倍和5.8倍。α-Fe2O3/g-C3N4复合材料优异的催化活性得益于在2D/2D S型电荷迁移机制上构建的光芬顿催化体系。2D/2D S型异质结能够显著促进电子和空穴的传输与分离,并为催化剂提供较大的比表面积和丰富的活性位点,同时还能保持复合材料最佳的氧化还原能力。此外,光催化反应促进了Fe3+的还原,从而加速了芬顿反应中羟基自由基的产生。总之,本研究为构建高效、稳定的光芬顿催化体系提供了一条简单有效的途径。  相似文献   

17.
Graphitic carbon nitride(g-C3N4)microspheres supported a-FeO(OH)hybrids[α-FeO(OH)/g-C3N4]were prepared by means of a self-assembly method in deionized water.By UV-visible diffiise reflectance spectroscopy,it has been confirmed thatα-FeO(OH)/g-C3N4 has a wider absorption range thanThe feature ofα-FeO(OH)/g-C3N4 can be attributed to the efficient separation of the electron-hole pairs with photoluminescence spectra.The degradation rate of methyl orange(MO)is up to 99%under the optimal conditions of 110 min,initial concentration of 30 mg/L,anα-FeO(OH)/g-C3N4 dosage of 15 mg as well as visible light.The mechanism for this photocatalytic reaction was proposed,with hydroxyl radicals being a major active catalytic species.  相似文献   

18.
研究了用离子交换沉淀法制备的Ag/Ag3PO4/g-C3N4的可见光光催化性能及再生方法.通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、紫外-可见(UV-Vis)吸收光谱及X射线光电子能谱(XPS)对其进行了结构特性分析.XRD结果显示再生后催化剂的结构未发生改变.FESEM及UV-Vis分析结果说明催化剂由Ag3PO4与g-C3N4复合而成.XPS分析结果表明催化剂表面出现少量的银单质.利用可见光(λ420nm)照射下的苯酚降解实验评价了样品的光催化活性,并通过活性物种及能带结构的分析对催化剂的光催化机理进行了推测.研究表明,Ag/Ag3PO4/g-C3N4的光催化活性明显高于纯Ag3PO4及纯g-C3N4,主要原因归结为单质银、Ag3PO4及g-C3N4的协同效应.经过氧化氢和磷酸氢铵钠(NaNH4HPO4)的再生可完全恢复催化剂的活性,这表明该绿色环保的再生方法可实现Ag/Ag3PO4/g-C3N4催化剂在环境中的实际应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号