首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscope (AFM) imaging and nanoindentation measurements in water were used to probe the mechanical properties of retinal pigment epithelium melanosomes isolated from 14-year-old and 76-year-old donors. Topographic imaging reveals surface roughness similar to previous measurements on dry melanosomes. Force-indentation measurements show different types of responses that were catalogued into four different categories. In these measurements no permanent surface damage of melanosomes was observed as revealed by imaging before and after indentation measurements. The indentation measurements that exhibited nearly elastic responses were used to determine the Young's modulus of melanosomes. The average Young's modulus values are similar for 14-year-old and 76-year-old melanosomes with a somewhat narrower distribution for the 14-year-old sample. These elastic modulus values are considerably higher than the modulus of organelles with cytoplasm (<1 MPa) and approaching values of the modulus of protein crystals (approximately 100 MPa) indicating rather high packing density of biologic material in melanosomes. The width of the Young's modulus distributions is considerable spanning from few megapascals to few tens of megapascals indicating large heterogeneity in the structure. A fraction of the force curves cannot be described by the homogeneous elastic sample model; these force curves are consistent with approximately 10 nm structural heterogeneity in melanosomes. The approach-withdraw hysteresis indicates a significant viscoelasticity, particularly in the samples from the 14-year-old sample. Adhesion of the AFM probe was detected on approximately 3% and approximately 20% of the surface of 14-year-old and 76-year-old samples, respectively. In light of previous studies on these same melanosomes using photoelectron emission microscopy, this adhesion is attributed to the presence of lipofuscin on the surface of the melanosomes. This suggestion indicates that part of the difference in photochemical properties between the old and young melanosomes originates from surface lipofuscin.  相似文献   

2.
Melanosomes and lipofuscin were isolated from 14-, 59-, and 76-year-old, human retinal pigment epithelium specimens and examined. The morphological features of these samples were studied by scanning electron microscopy and atomic force microscopy, and the photoionization properties were examined by photoelectron emission microscopy. Ovoid- and rod-shaped melanosomes were observed. The size of the granules and the distribution between the two shapes show no significant age-dependent change. However, there is a higher occurrence of irregularly shaped aggregates of small round granules in older samples which suggests degradation or damage to melanosomes occurs with age. The melanosomes from the 14-year-old donor eye are well characterized by a single photoionization threshold, 4.1 eV, while the two older melanosomes exhibit two thresholds around 4.4 and 3.6 eV. Lipofuscin from both young and old cells show two thresholds, 4.4 and 3.4 eV. The similarity of the potentials observed for aged melanosomes and lipofuscin suggest that the lower threshold in the melanosome sample reflects lipofuscin deposited the surface of the melanosome. The amount, however, is not sufficient to alter the density of the melanosome, and therefore these granules do not separate in a sucrose gradient at densities characteristic of the typical melanolipofuscin granule. These data suggest that thin deposits of lipofuscin on the surface of retinal pigment epithelium melanosomes are common in the aged eye and that this renders the melanosomes more pro-oxidant.  相似文献   

3.
Melanin in the long-lived melanosomes of the retinal pigment epithelium (RPE) may undergo photobleaching with aging, which appears to diminish the antioxidant function of melanin and could make photobleached melanosomes less efficient in protecting biomolecules from oxidative modification. Here we analyzed whether photobleaching of melanosomes affects their ability to modify the oxidation state of nearby protein. As conventional methods developed to study soluble antioxidants are not well suited for analysis of granules such as melanosomes, we developed a new analytic method to focus on particle surfaces that involves experimentally coating granules with the cytoskeletal protein beta-actin to serve as a reporter for local protein oxidation. Isolated porcine RPE melanosomes were photobleached with visible light to simulate aging, then photobleached melanosomes, untreated melanosomes and control particles (black latex beads) were actin coated and illuminated in a photosensitized cell free system. Protein was re-stripped from particles and analyzed for carbonylation by Western blotting. Quantitative densitometry showed no reproducible differences for protein associated with untreated melanosomes when compared with control particles. Melanin has both anti- and pro-oxidant functions when light irradiated, but neither of these functions predominated in the protein oxidation assay when untreated melanosomes were used. However, protein extracted from photobleached melanosomes showed markedly increased carbonylation, both of associated actin and of endogenous melanosomal protein(s), and the effect increased with extent of granule photobleaching. Photobleaching of RPE melanosomes therefore changes the oxidation state of protein endogenous to the organelle and reduces the ability of the granule to modify the oxidation of exogenous protein near the particle surface. The results support the growing body of evidence that photobleaching of RPE melanosomes, which is believed to occur with aging, changes the physicochemical properties of the organelle and reduces the likelihood that the granules perform an antioxidant function.  相似文献   

4.
Melanosomes were isolated from the retinal pigment epithelium (RPE), iris and choroid of mature (age >2 years) and newborn (age <1 week) bovine eyes. Scanning electron microscopy was utilized to analyze the morphology of the melanosomes, which were found to vary among different tissues and different ages. While the total content of amino acids differs slightly (ranging from 9% to 15% by mass), the distributions of the amino acids are similar. The pheomelanin content is low in the choroid and the RPE (0.1-0.5%), and moderate in the iris (<2%); therefore, the major melanin component of bovine eye melanosomes is eumelanin, independent of the shape of the melanosomes. The yields of pyrrole-2,3,5-tricarboxylic acid from melanosomes decrease in the following order: choroid > iris > RPE, and exhibit decreasing yields with age. 13C solid-state nuclear magnetic resonance (NMR) spectroscopic analysis of iris and choroid melanosomes indicates the same trends. These observations suggest that the 5,6-dihydroxyindole-2-carboxylic acid contents decrease in the following order: choroid > iris > RPE, and decrease with age. Moreover, the 13C solid-state NMR spectra show (1) for the same age samples, the CH:Cq ratio for choroid is larger than that for iris melanosomes; and (2) an increase in the concentration of carbonyl groups with age within each type of melanosome.  相似文献   

5.
Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects of melanosome modifications.  相似文献   

6.
Electron spin resonance (ESR) examinations of human retinal pigment epithelium melanosomes isolated from eyes of young and old donors were carried out. The examined ESR signal was a single line, which is characteristic for free radicals of eumelanin o-semiquinones. The content of free radicals related to melanosomes dry weight for samples from older donors (ages over 45 years) were higher than for sample from younger donors (between 14 and 22 years). Simultaneously, the content of free radicals calculated for one melanosome is constant and does not depend on age. The homogeneous broadening of the recorded ESR lines shows that there are no isolated spin packets in all investigated melanin samples. Slow spin-lattice (T1 approximately 10(-5) s) and fast spin-spin (T2 approximately 10(-8) s) relaxation processes occur in these samples. Saturation of the ESR lines at low microwave power was measured. High concentration of free radicals in melanosome samples was responsible for the fast spin-spin relaxation process.  相似文献   

7.
The effect of continuous UV radiation and hydrogen peroxide on destruction and antioxidant properties of synthetic DOPA-melanin (prepared by oxidation of 3,4-dihydroxyphenylalanine (DOPA)) and melanosomes isolated from cells of the retinal pigment epithelium (RPE) was investigated. The kinetics of melanin destruction was recorded based on the accumulation of fluorescent low-molecular-weight reaction products, the antiradical activity of melanin was determined by chemiluminescence method, the concentration of free radical products was measured by electron paramagnetic resonance, and the antioxidant activity of melanins was estimated by their inhibitory effect on lipid peroxidation. It was shown that UVC—UVA irradiation (up to 5 hours) of DOPA-melanin and melanosomes of retinal pigment epithelium decreased neither the latency period of luminol chemiluminescence nor the inhibitory action of pigments on Fe2+- and UV-induced peroxidation of cardiolipin liposomes. However, very long UV irradiation gave rise to fluorescent destruction products, decreased the concentration of paramagnetic centers in the pigment (especially light-dependent ones), and decreased the antiradical and antioxidant activities. For example, UV irradiation of DOPA-melanin during 52 h resulted in approximately a 2-fold decrease in the concentration of paramagnetic centers and decline of antiradical and antioxidant activities. However, even with such a hard irradiation the pigment retained significant inhibitory activity against lipid peroxidation. The oxidative destruction of DOPA-melanin in the presence of hydrogen peroxide in the dark resulted in complete destruction of the polymer and loss of its protective properties. It is assumed that destruction of RPE cell melanin is caused mainly by oxidative processes.  相似文献   

8.
Visible light-induced changes in fluorescence characteristics of lipofuscin granules (LG) isolated from retinal pigment epithelium of human cadaver eyes are compared with the analogous age-related changes and correlated with the content and photooxidation of LG main fluorophore, A2E. We used HPLC to examine changes of LG fluorophore composition with donor age, as well as before and after visible-light irradiation (the latter HPLC tests were also done with synthetic A2E). Visible light induces oxidation of LG fluorophores. As a result, their fluorescence characteristics change: the emission spectrum is blue-shifted by 25–40 nm. The observed age-dependent changes in the relative content of LG fluorophores and their oxidized derivatives were qualitatively similar with those caused by irradiation. To improve the accuracy of a new noninvasive diagnostic method, fundus autofluorescence imaging, it is important to know the ratio of nonoxidized and oxidized fluorophore derivatives depending on age and eye pathology.  相似文献   

9.
Hemoprotein(s) mediate blue light damage in the retinal pigment epithelium   总被引:1,自引:0,他引:1  
In order to elucidate the mechanisms of blue light damage on ocular tissues, the transepithelial transport, electrical characteristics and ultrastructural properties of irradiated isolated bovine retinal pigment epithelium (RPE) were investigated. Blue light (430 nm) irradiation at 20 mW/cm2 significantly reduced the transepithelial potential and short circuit current of RPE. During blue light exposure, a decrease in chloride transport was observed, and this decrease appeared to be closely coupled to changes in the electrical properties of the pigment epithelium. A decrease in leucine transport was also noted, but the effect required 10-30 min of exposure to be manifested on some occasions. Utilizing the observed depolarizing effect of blue light, an action spectrum was determined which encompasses the absorption spectrum of the oxidized and reduced forms of cytochrome c oxidase. O2 uptake studies on isolated pigment epithelial cells verified the reduction of respiration by exposure to blue light, which is observed in other cells. Ultrastructural studies revealed that the major cytopathology observed up to 60 min after blue light exposure was a blistering of the mitochondria which progressed to a swollen, disrupted state within the post irradiation period of 1 h. Comparison of these results with those of other studies suggests that the mechanism of UV-A damage differs substantially from that of blue light.  相似文献   

10.
11.
Antioxidant properties of melanin in retinal pigment epithelial cells   总被引:7,自引:0,他引:7  
The retinal pigment epithelium (RPE) is a monolayer of highly pigmented cells lining the inner aspect of Bruch's membrane. This pigmentation is due to eumelanin and a possible antioxidant role of melanin is reported here. The photo-oxidation of A2E, a constituent of RPE lipofuscin, leads to the sequential addition of up to nine oxygen atoms and/or the addition or loss of two hydrogen atoms. These photo-oxidations were investigated in the presence and absence of either calf or human RPE melanin in A2E-laden RPE cells. It was found that calf melanin was protective against the photo-oxidation of A2E, with an inhibition of oxidation of up to 50% in the case of the addition of two oxygen atoms. Calf melanin was also protective against blue light-induced damage to RPE cells. In addition this ability appears to decrease in humans as they grow older. With aging, a melanin-lipofuscin complex called melanolipofuscin forms. It is suggested that the oxidation or photo-oxidation of A2E in vivo may contribute to the age-related deterioration of the anti-oxidant role of RPE melanin and lead to various retinal disorders, such as age-related macular degeneration.  相似文献   

12.
Blue visible light damage to retinal pigment epithelial cells occurs through a photooxidative mechanism and the resultant damage is hypothesized to induce or exacerbate age-related macular degeneration. The purpose of the present study was to identify changes in the cell growth and the expression of hepatocyte growth factor (HGF) in cultured human retinal pigment epithelium (RPE) cells as a result of both blue and red light irradiation. HGF is a growth factor and neurotrophic factor that stimulates growth of various ocular cells and promotes the survival of RPE and retinal neurons. Early passages of human RPE cells were exposed to blue light (460 nm) and red light (640 nm). Nonirradiated cells were used as controls. After 24 and 48 h, conditioned medium was collected and the amount of HGF was measured by ELISA. Cells were detached from the well and counted. Cell viability was evaluated by trypan-blue exclusion study. Blue light at dosage of 63 J/cm(2) significantly inhibited the growth of RPE cells without affecting of cell viability. Amounts of HGF in the culture medium were significantly inhibited by blue-light irradiation at the dosage from 32 to 63 J/cm(2). Red light at a dose of 174 J/cm(2) causes a nonsignificant inhibition of growth of RPE cells and a slight decrease of secretion of HGF. As HGF promotes survival of RPE cells and retinal neurons, the inhibition of production of HGF by visible light, especially by blue light, may enhance the phototoxic effects of visible light on the RPE and retinal neurons.  相似文献   

13.
The damaging effect of lipofuscin granules from the human retinal pigment epithelium and fluorophore A2E was studied on models of calcein- and ascorbate-loaded cardiolipin liposomes and outer segments of the bovine eye photoreceptor cells in dark and under visible light irradiation. In dark fluorophore A2E induces the release of calcein from calcein-loaded liposomes and reduces the lifetime of the artificial bilayer lipid membrane prepared from dioleyl phosphatidilcholine. A similar detergent-like action A2E exhibits towards ascorbate-loaded liposomes, significantly accelerating the release of ascorbate in dark. In the presence of A2E, irradiation with the full visible light (390?C700 nm) stimulates both the release of ascorbate from liposomes and accelerates the destruction of the bilayer lipid membrane. Retinal pigment epithelium lipofuscin granules also accelerate the release of ascorbate from ascorbate-loaded liposomes under visible light irradiation; the blue light (457.9 nm) was twice as more efficient as the green light (514.5 nm). The preliminary irradiation of A2E with the visible light decreases its detergent-like action on the cardiolipin liposomal membranes under the dark conditions and the photosensitizing effect on the lipid peroxidation of the outer segments of photoreceptor cells. Unlike A2E, the visible light irradiation of a suspension of lipofuscin granules under similar conditions does not noticeably decrease their sensitizing activity towards lipid peroxidation. It is assumed that the phototoxicity of retinal pigment epithelium lipofuscin granules is related not only to A2E in their composition, but depends mainly on the content of other photosensitizers (chromophores) in the granules.  相似文献   

14.
Melanosomes are organelles found in a wide variety of tissues throughout the animal kingdom and exhibit a range of different shapes: spheres of up to approximately 1 mum diameters and ellipsoids with lengths of up to approximately 2 mum and varying aspect ratios. The functions of melanosomes include photoprotection, mitigation of the effects of reactive oxygen species, and metal chelation. The melanosome contains a variety of biological molecules, e.g., proteins and lipids, but the dominant constituent is the pigment melanin, and the functions ascribed to melanosomes are uniquely enabled by the chemical properties of the melanins they contain. In the past decade, there has been significant progress in understanding melanins and their impact on human health. While the molecular details of melanin production and how the pigment is organized within the melanosome determine its properties and biological functions, the physical and chemical properties of the surface of the melanosome are central to their range of ascribed functions. Surprisingly, few studies designed to probe this biological surface have been reported. In this article, we discuss recent work using surface-sensitive analytic, spectroscopic, and imaging techniques to examine the structural and chemical properties of many types of natural pigments: sepia melanin granules, human and bovine ocular melanosomes, human hair melanosomes, and neuromelanin. N 2 adsorption/desorption measurements and atomic force microscopy provide novel insights into surface morphology. The chemical properties of the melanins present on the surface are revealed by X-ray photoelectron spectroscopy and photoemission electron microscopy. These technologies are also applied to elucidate changes in surface properties that occur with aging. Specifically, studies of the surface properties of human retinal pigment epithelium melanosomes as a function of age are stimulating the development of models for their age-dependent behaviors. The article concludes with a brief discussion of important unanswered research questions in this field.  相似文献   

15.
Making full use of sunflower seeds, including oil and the polysaccharides extracted from the meals which oil has been extracted, is one way to enhance their industrial value. Such meals contain abundant polysaccharides; however, the application of polysaccharides isolated from sunflower remaining meals after oil extraction has not been investigated. In this study, polysaccharides were isolated by alkali from sunflower meals after different oil extraction processes, and their structural properties and antioxidant activities were compared. The results indicated that these polysaccharides displayed significant variability in monosaccharide composition and molecular weight. Differences in structural properties could result in differences in functional antioxidant properties. The polysaccharide (SPHE-1) obtained from the meals after traditional hexane extraction exhibited the best antioxidant activities, including DPPH free radical-scavenging assay and hydroxyl radical scavenging activity among all the polysaccharide fractions. The research provides valuable information for making efficient use of sunflower seeds in the food industry.  相似文献   

16.
Bovine iris and choroid melanosomes at two ages (<1 week and >2 years) were examined by inductively coupled plasma mass spectrometry (ICP-MS), elemental analysis, infrared spectrometry (IR) and X-ray photoelectron spectrometry (XPS). When iris and choroid melanosomes at the same age were compared, the quantification of metal elements by ICP-MS revealed that choroid melanosomes had a higher binding capacity for the carboxylate-binding metal ions (e.g. Na+ K+, Mg2+, Ca2+ and Zn2+). Elemental analysis showed a higher O:N ratio in choroid melanosomes. Both observations suggested that choroid melanosomes have a higher content of carboxylate-containing monomer than iris melanosomes. IR spectrometric analysis showed a red shift (approximately 8 cm(-1)) of the absorption peak of aromatic C=C, C=N and C=O at approximately 1630 cm(-1) in the IR spectrum of iris melanosomes relative to choroid melanosomes. Increased conjugation in the molecular structure of the pigment is proposed to contribute to this peak shift. It is also notable that although the elemental analysis showed different C, N and O contents in the two types of melanosomes, XPS showed almost the same elemental compositions on the surface of two types of iris and choroid melanosomes studied. When the melanosomes from the same tissues at different ages were compared, ICP-MS analysis suggested that the number of carboxylate groups in the melanosomes decreased with age. Both elemental analysis and XPS showed that C:N ratio decreased with age, which was proposed to be due to both a decrease in carboxylate groups in mature samples and to the fissure of phenol rings caused by age-associated oxidation. Such age-related oxidative damage diminishes conjugation and is manifested by blue shifts of absorption peaks for aromatic double bonds in the IR spectra of mature melanosomes. XPS analysis showed that the ratio of C-O:C=O decreased with age. These tissue-related and age-related chemical differences between samples affected the optic density and metal binding properties of melanosomes, which are believed to be closely associated with the biological functions of melanins.  相似文献   

17.
Abstract

This study focuses on isolation of pigment producing bacteria from fresh water sediment. The isolated bacteria were grown in nutrient broth and the maximum absorbance of 2.512 was obtained for the extracted pigment at 500 nm. The effective strains were optimized, pH 11 and temperature 30 °C was found to be more favorable for its maximum growth. The isolates were identified based on their molecular characterestics as Microbacterium arborescens and Sphingomonas paucimobilis, molecular size of the amplified 16S rRNA gene sequence was found to be approximately 1270 and 765 bp respectively. The antioxidant property of the pigment was analyzed using DPPH and ABTS assay. The IC50 value of Microbacterium arborescens was higher in all the three assays in comparison with Sphingomonas paucimobilis. The extracted pigment was characterized for the presence of compounds using GC-MS and FTIR analysis to determine the functional groups. As the pigment obtained from M. arborescens had shown better antioxidant activity it may be used as colorant in food industrial applications.  相似文献   

18.
Girinimbine, a carbazole alkaloid isolated from the stem bark of Murraya koenigii was tested for the in vitro anti-tumour promoting and antioxidant activities. Anti-tumour promoting activity was determined by assaying the capability of this compound to inhibit the expression of early antigen of Epstein-Barr virus (EA-EBV) in Raji cells that was induced by the tumour promoter, phorbol 12-myristate 13-acetate. The concentration of this compound that gave an inhibition rate at fifty percent was 6.0 μg/mL and was not cytotoxic to the cells. Immunoblotting analysis of the expression of EA-EBV showed that girinimbine was able to suppress restricted early antigen (EA-R). However, diffused early antigen (EA-D) was partially suppressed when used at 32.0 μg/mL. Girinimbine exhibited a very strong antioxidant activity as compared to a-tocopherol and was able to inhibit superoxide generation in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiated premyelocytic HL-60 cells more than 95%, when treated with the compound at 5.3 and 26.3 μg/mL, respectively. However girinimbine failed to scavenge the stable diphenyl picryl hydrazyl (DPPH)-free radical.  相似文献   

19.
An ultrasonic technique was employed to extract polysaccharides from longan fruit pericarp (PLFP). Effects of ultrasonic power, time and temperature on the extraction of PLFP were examined. Different effects of ultrasonic time were observed at two different ultrasonic power of 120 and 300 W. A higher recovery rate of PLFP at an ultrasonic power of 300 W was obtained as compared with 120 W. The recovery rate of PLFP was slightly increased by elevating the ultrasonic temperature up to 60 °C. The highest recovery rate of PLFP was achieved at 120 W and 70 °C for 20 min. Furthermore, PLFP I and PLFP II-IV were prepared by hot-water extraction and ultrasonic extraction, respectively, and then used for the analyses of physical and chemical properties. Analysis by differential scanning calorimetry showed that the onset temperature, peak temperature, conclusion temperature and melting enthalpy (ΔH) of PLFP by hot-water extraction were lower than those by ultrasonic extraction. These results suggested that rearrangement of PLFP microstructure could occur and development of a higher proportion of crystalline regions might be induced by the ultrasonic treatments. The highest ΔH (8.02 J/g) and two endothermic peaks were observed in the thermogram of PLFP II. Scanning electron micrographs revealed more aggregated particles in PLFP III and IV compared with PLFP I and II. However, no apparent differences were found from the spectra of these four PLFP samples at a range of 195-550 nm, which indicated that ultrasonic treatment might not cause significant chemical modification of groups in the PLFP chain.  相似文献   

20.
The mechanism of the toxicity of light on the retina remains unclear despite a large number of investigations. The purpose of this study is to identify and localize the ultrastructural changes and the site of the earliest damage after intense light exposure. Nine adult Syrian golden hamsters (Mesocricetus auratus) have been maintained under constant illumination with a high-pressure mercury lamp (HQJ R 80 W Deluxe, Osram, Berlin, light intensity 1000 lx) for 12 h, followed by an additional 3 h in the dark. Light damage is assessed by light and electron microscopy. Morphological evaluation reveals focal damage to the retinal pigment epithelial (RPE) cells in close proximity to less-affected RPE cells and normal photoreceptors. Collagen fibers in Bruch's membrane lose their parallel orientation. Occasionally, fusion of cell membranes of neighboring rod outer segments (ROS) is also observed. Continuous, 12 h exposure of hamsters to intense light results in initial focal damage to some RPE cells, such that severely damaged RPE cells are found adjacent to intact RPE cells. Only slight damage to the photoreceptors is evident, suggesting that the sequence of the pathological changes resulting from light begins with damage to the RPE cells and associated Bruch's membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号