首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the aprotic solvent dimethylacetamide on the equilibrium and transport properties of heterogeneous (MK-40, MA-40, and MA-41) and homogeneous (MF-4SK) ion-exchange membranes is investigated. On the basis of concentration dependences of the conductivity and diffusion permeability of membranes, model calculations of transport-structural parameters that reflect the structural and kinetic characteristics of conducting phases of the swollen polymer are performed. The effect of the aprotic solvent on the flow of current through the structural fragments of the ion-exchange material is estimated. The causes of changes that are induced in the properties of the membranes by the aprotic solvent are ascertained.  相似文献   

2.
Polarization characteristics of the homogeneous MF-4SK perfluorinated sulfonated cation-exchange membrane and the heterogeneous MK-40 sulfonic acid membrane with its surface modified by a homogeneous film of Nafion are studied at a rotating membrane disk in 0.1 and 0.001 M sodium chloride solutions. Partial current-voltage curves (CVC) are obtained for sodium and hydrogen ions, and limiting current densities in the electromembrane systems (EMS) under study are calculated as a function of the rotation rate of the membrane disk. Contribution from different mechanisms (electrodiffusion, electroconvection, dissociation of water, and the effect of the limiting-current exaltation) to the total ion flow is estimated experimentally and theoretically under conditions that the diffusion layer in the EMS has stabilized in thickness. It is established that surface modification of the heterogeneous MK-40 membrane with a 7 μm layer of a modifying agent almost completely eliminates the dissociation of water molecules, and the properties of the heterogeneous MK-40 membrane approximate those of the homogeneous Nafion membrane. From IR spectra and potentiometric titration curves of the MK-40 and MF-4SK membranes, it is shown that the acidity of the sulfonate groups in these membranes is nearly identical, but a difference in the dissociation rate of water at these membranes is determined by a different character of charge-density distribution and potential near the membrane-solution interphase boundary. By means of the theory of the overlimiting state in EMS, the internal parameters of the systems under investigation are calculated: distribution of space-charge density and electric-field potential in the diffusion layer and in the membrane. Partial CVC are calculated for H+ ions for the space-charge region in the phase of the MF-4SK and MK-40/Nafion ion-exchange membranes. Partial CVC with similar characteristics are compared for the heterogeneous monopolar MK-40 and the bipolar MB-2 membranes, which contain sulfonate groups. It is concluded that the membrane surface layer, where the space charge is localized, plays a dominant role in speeding up the dissociation of water in EMS.  相似文献   

3.
A new method of chronopotentiometric study of electroosmotic water transfer in the electromembrane system containing amino acid solution is elaborated. An electrodiffusion problem, which allows for a convective solvent transfer in the system, is formulated and solved. By comparing calculated and experimental transition times for MK-40 and MF-4SK cationite membranes in lysine monohydrochloride solutions, the electroosmotic permeability of the membranes and transport numbers of water through them are calculated. A considerably higher electroosmotic water transport through MK-40 as compared with MF-4SK is attributed to differences in their nature and structure.  相似文献   

4.
The first results on the electroluminescence of the MK-40L, MK-40K, MF-4SK, MA-40L, MA-41L, MA-40K, and MA-41K ion-exchange polymeric membranes in the swollen state are reported. It was found that electroluminescence had the character of flashes. Intensity and time characteristics of electroluminescence were determined over the range of NaCl solution concentrations from 0 to 0.1 M. The special features of electroluminescence from the ion-exchange membranes were determined from their photographs. It was found that the membranes in the air-dry state did not exhibit electroluminescence.  相似文献   

5.
The possibility of assessing the selectivity of composite perfluorated membranes MF-4SK modified with polyaniline (PANI), based on the concentration dependence of their specific conductivity in terms of the extended three-wire model of conduction of ion-exchange materials is investigated. To check the reliability of results obtained, the transport numbers of ions are calculated based on the electrodiffusion coefficients of counter ions and coions determined from concentration dependences of conductivity and diffusion permeability of ion-exchange membranes. The transport numbers of hydrogen ions found by these two methods are shown to coincide with high accuracy throughout the whole range of concentrations of HCl solutions for the original MF-4SK membrane and membranes with the fixed thickness of the modified polyaniline layer on their one side. For the MF-4SK sample the with gradient distribution of polyaniline, which exhibits asymmetrical transport characteristics, the deviation between the transport numbers of ions calculated with the use of electrodiffusion coefficients of counter ions and coions and those determined in terms of the extended three-wire model of conduction is shown to increase with the increase in solution concentration but not exceed 4%.  相似文献   

6.
A homogeneous (AMX) and two heterogeneous (MA-40, MA-41) anion-exchange membranes, as well as a heterogeneous cation-exchange membrane (MK-40), are studied by electronic scanning microscopy, voltammetry, and chronopotentiometry. The presence of conducting and nonconducting regions on the surfaces of heterogeneous membranes is established by means of element analysis. The fraction of conducting regions is found by an image treatment. The surface of the AMX membrane was partially coated with microspots of a paint to make it heterogeneous (AMXheter). Voltammetric and chronopotentiometric measurements for AMX, AMXheter, and MA-41 membranes in NaCl solutions are carried out and the pH changes in the solution layers adjoining to these membranes are recorded. Analysis of obtained results shows that the concentration polarization of studied membranes characterized by the potential drop and the rate of water dissociation at the interface is mainly governed by the properties of their surfaces. It is found that the local limiting current density through conducting regions of a heterogeneous membrane is several times higher than the average limiting current through a homogeneous membrane.  相似文献   

7.
A method is developed for obtaining anisotropic composites based on the sulfonated cation-exchange MF-4SK and MK-40 membranes and the electroactive polymer polyaniline (PANI). The kinetics of aniline polymerization by successive diffusion in these membranes is investigated, and differences in the transport characteristics of the resulting MF-4SK/PANI and MK-40/PANI composites are identified. It is established from results of electroosmotic and diffusion experiments that the composite MF-4SK/PANI-1 membrane (after 1 h of aniline polymerization) suppresses electrolyte and water flow the most. Diffusion permeability drops by an order of magnitude, and water transport numbers are reduced by 50–70%. In the process of sodium chloride concentration by electrodialysis, the salt content of the concentrate increases by 50–70% with the composite MF-4SK/PANI-1 membrane compared to the base MF-4SK membrane and by 15–20% compared to the electrodialysis MK-40 membrane. Transport characteristics of the membrane pairs under investigation are calculated from the model of limiting concentration by electrodialysis: current efficiency, water transport numbers, osmotic and diffusion permeability. The dominant influence of the electroosmotic mechanism of water transport on the effect of salt solution concentration is established.  相似文献   

8.
The electric transport of solvent ions and molecules through membrane systems containing cations of tetraalkylammonium bases is studied. The interrelation between electrokinetic characteristics of sulfonated cation-exchange membranes at different degrees of their saturation with tetrabutylammonium ions and the content of water in membranes at equilibrium is established. A new type of conductor-insulator percolation transitions is revealed for homogeneous MF-4SK perfluorinated membranes saturated with organic counterions. This transition is interpreted with allowance for the concept of the governing role of narrow channels in the membrane microstructure. The electroosmotic permeability of MF-4SK membranes in solutions of sodium and tetraethylammonium chloride, as well as in their mixtures, is studied. An experimentally observed abnormally high amount of water transferred by tetraethylammonium ions is discussed with allowance for the dynamic hydration characteristics of ions.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 485–493.Original Russian Text Copyright © 2005 by Kononenko, Berezina, Shkirskaya.  相似文献   

9.
The average size and number of water clusters inside ion-exchange membranes are calculated from experimental isotherms of water vapor sorption as a result of considering the sorption in terms of the clusterization theory. It is established that, in MK-40 heterogeneous cation-exchange membrane, water clusters are not formed, while, inside MF-4SK perfluorinated homogeneous membrane, intense cluster formation takes place. The effect of amino acid sorption on cluster water is considered. An increase in the membrane hydrophobicity as a result of the incorporation of amino acid ions leads to prevailing interaction of water molecules with one another rather than with the polymer phase, which is evident from an enlargement of water clusters.  相似文献   

10.
Composites based on perfluorinated cation-exchange membranes MF-4SK with embedded hydrous zirconia were synthesized. The composites have higher proton conductivity, lower diffusion permeability, and higher ion-transport selectivity than unmodified MF-4SK membranes. Diffusion permeability anisotropy was found in samples with heterogeneous dopant distribution across the membrane.  相似文献   

11.
Within the framework of the mathematical model of Nernst-Planck-Poisson, an attempt is undertaken to theoretically describe the electrodiffusion of ions in the system diffusion layer/monopolar ionexchange membrane, which is accompanied by dissociation of water molecules. The formulas for estimating the current density transferred through a monopolar membrane by hydrogen or hydroxyl ions formed in dissociation of water in the space-charge region are derived. The rate constants and other parameters of dissociation of water molecules in the space-charge region of monopolar membranes under conditions of stabilization of the diffusion layer thickness are calculated. Their comparative analysis with the similar characteristics of bipolar membranes is carried out. For the phosphoric-acid heterogeneous membrane MK-41 in which the polarization conditions in the current density range under study are not so severe and the reaction layer is not being depleted as in the bipolar membrane MB-3 (contains the same phosphoric-acid groups), it is shown that only single-charged phosphoric-acid groups are involved in the water dissociation reaction. For MK-41, the calculated constants of the heterolytic reaction of water molecule dissociation are lower than for the heterogeneous membrane MA-40 containing ternary and quaternary amino groups. It is confirmed that the nature of ionogenic groups in membranes is a factor that determines the rate of water dissociation in systems with ion-exchange membranes.  相似文献   

12.
Characteristics of mass transport of the anions of pyrophosphoric acid are investigated during electrodialysis through MA-40 and MA-41 anion-exchange membranes. It is established that the rate of mass transport for counterions is greater through the MA-41 membrane than the MA-40 membrane, and thus the former can be used for demineralizing solutions with salts of pyrophosphoric acid. Higher selectivity to pyrophosphate ions is found for the MA-40 membrane compared to the MA-41 membrane in the electrodialysis of mixtures of pyrophosphate and hydropyrophosphate ions, and thus the MA-40 membrane can be regarded as promising for the separation of such mixtures.  相似文献   

13.
The effect of silver ions and nanoparticles on the electrochemical properties of KU-2-8 sulfocationite, MF-4SK homogeneous sulfocationite membrane, and MA-40 heterogeneous anion-exchange membrane is studied. Using scanning electron microscopy, the particle distribution throughout the cationexchanger thickness is studied. The method of IR spectroscopy is used for studying the interaction of silver nanoparticles and ions and also of Cu2+ and Ni2+ ions with secondary and tertiary amino groups. It is shown that the mobilities of sodium and silver ions are close in sulfocationites, which suggests that silver ions are quickly washed out of such materials. In the anion-exchange membrane, silver ions are bound into complexes with ionogenic groups and induce an increase in the water dissociate rate in the membrane. The reduction of silver ions contained in cation-exchangers in a molar fraction of 80% with sodium borohydride affords a conducting metal silver film on their surfaces. The introduction of silver nanoparticles into the MA-40 anionexchange membrane is accompanied by the increase in both the limiting electrodiffusion current and the water dissociation rate in the membrane, which is apparently due to the partial oxidation of metal silver particles to afford silver oxide in the near-surface membrane layer. The latter oxide exhibits weak catalytic activity with respect to water dissociation reaction in the membrane, which results in an insignificant increase in the effective transport numbers of hydroxide ions through the membrane.  相似文献   

14.
Electrosmotic water transport in MK-40, MA-40, and MA-41 electrodialysis membranes before and after their treatment by aprotic solvent solution and electroosmotic permeability of a MK-40/MA-40 membrane couple in water and N,N-dimethyl acetamide were studied for the first time. It is found that N,N-dimethyl acetamide produces practically no effect on the properties of the studied ion-exchange materials and its transport number through the MK-40/MA-40 membrane couple is independent both of the initial lithium chloride concentration in a desalting cell of the concentrator electrodyalizer and its volume fraction in the solution. The initial concentration of lithium chloride in the desalting cell does not affect the transport numbers of water in the studied membrane couple either. However, these depend on the volume fraction of the organic component in the solution and this dependence features an extremum. A method for estimation of electroosmotic permeability of the membrane couple in aqueous-organic solutions of electrolytes is suggested.  相似文献   

15.
Kinetic regularities of electrical mass transfer of sodium chloride and glycine in electromembrane systems containing cation-exchange membranes MK-40 and MF-4SK in aqueous solutions of sodium chloride and glycine are studied using a rotating membrane disk. Limiting current densities and limiting steps of the cation transport are determined. Parameters of homogeneous reaction of protonation of glycine zwitterions near the membranes surface (limiting reaction current density, reaction layer thickness, rate constant of the protonation reaction) are evaluated under limiting concentration polarization.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 310–316.Original Russian Text Copyright © 2005 by Zagorodnykh, Bobreshova, Kulintsov, Aristov.  相似文献   

16.
Several laws governing ampholyte transport through ion-exchange membranes are established by a comparative analysis of the concentration dependence of electrical conductivity for homogeneous (CMX, AMX) and heterogeneous (MK-40, MA-41) membranes in NaCl, LysHCl, and NaH2PO4 solutions. The increase in the electrical conductivity of membranes in ampholyte solutions as the solutions become more dilute is explained by the increased fraction of divalent ions of the amino acid (cation-exchange membrane) or from phosphoric acid (anion-exchange membrane) in the membrane as a result of Donnan exclusion of hydrolysis products (hydroxide ions or protons, respectively).  相似文献   

17.
The current efficiencies of the water dissociation water and the voltage-current characteristics of the bipolar (asymmetric bipolar) membranes were measured in a two-chamber electrochemical cell. The cell was formed of an MB-3 bipolar membrane or an asymmetric bipolar membrane, which is an MA-40 heterogeneous membrane with a thin surface layer in the form of a cation-selective homogeneous film and MA-40 and MA-41 heterogeneous monopolar membranes. The dissociation of water on MA-40 in 0.01 M sodium chloride decreased the current efficiency of the acid and alkali both in the channel with a bipolar membrane and in the channel with an asymmetric bipolar membrane. The effective ion transport numbers across MA-40 and MA-41 at different pH values were determined. The water dissociation rate on MA-40 decreased at pH > 9.5. A kinetic model of the electrodialysis of a dilute solution of sodium chloride in a two-chamber unit cell with a bipolar and anionite membranes was suggested.  相似文献   

18.
This study examines how conditions for modifying homogeneous MF-4SK and heterogeneous MK-40 membranes with tetraethoxysilane affect membrane properties. The microstructure of the bulk membrane and its surface, both before and after exposure to the modifying agent, is examined by scanning electron microscopy, spark spectrophotometry, and standard contact porosimetry. The process of sodium chloride concentration by electrodialysis with hybrid organic-inorganic membranes in cells with noncirculating concentration compartments is investigated, and a mathematical model of the concentration process by electrodialysis is used to determine transport properties: current efficiency, diffusion and osmotic permeabilities, and the salt hydration number. For highly hydrophilic membranes, it is shown that water transport occurs both in ion hydration shells and also as free water. It is established that after modified membranes undergo additional heat treatment, the transport of free water ceases, and the water transport number decreases. This is in accord with an increase in the salt content of the concentrate during concentration by electrodialysis.  相似文献   

19.
Electroconductivities of heterogeneous ion-exchange membranes MK-40 and MA-41I are studied experimentally by a band method in solutions of amino acids with various isoelectric points. Based on the data obtained, three possible mechanisms of electrotransport in a system membrane-amino acid solution are considered: the charge transfer by hydrogen (hydroxyl) ions, amino acid ions, and simultaneously by inorganic and amino acid ions (mixed mechanism).  相似文献   

20.
A selective potentiometric sensor was developed on the basis of MF-4SK modified perfluorinated sulfonic cation-exchange membranes for determining lysine monohydrochloride in mixed aqueous solutions of neutral amino acids. It was shown that the treatment of MF-4SK membranes in ethylene glycol increased the sensitivity of the sensor. The use of MF-4SK perfluorinated sulfonic cation-exchange membranes for determining lysine in aqueous solutions is based on a protolytic reaction; as a result of this reaction, single-charged lysine ions from solution are transferred into doubly charged ions in the membrane phase. The Donnan potential at an individual boundary between the studied solution and the membrane is the sensor response. The response time was 10–15 min. The concentration constants of the sensor selectivity to lysine in the presence of glycine, alanine, and leucine did not exceed 0.019. The relative error of determining lysine monohydrochloride in the studied solutions of neutral amino acids was 2–5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号