首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using cone index as an indication of soil strength, empirical equations are developed in accordance with soil mechanics theory to relate soil moisture content to plough draught. The plough draught equation comprises a quasi-static component dependent on cone index and a dynamic component which is a function of the soil specific weight, plough speed and mouldbard tail angle. It is further argued that the cohesive and frictional components of the cone penetration resistance can be predicted by means of a simple equation comprising a reciprocal function of the square of the soil moisture content and a linear function of the soil specific weight. The cone index equation explained 98% of the experimental data for threthree soils over a wide range of moisture contents. These empirical equations, together with a soil moisture model, provide a method of predicting plough draught directly from soil and meteorological data.  相似文献   

2.
Cylindrical soil probes measuring 300 mm in diameter by 300 mm in height were prepared in the laboratory using samples extracted from a well drained loamy soil (FAO classification: Vertic Luvisol). These probes were compacted at different moisture contents [3, 6, 9, 12, 15 and 18 (% w/w)] and using different compaction energies (9.81, 49.05, 98.1 and 981 J). The soil penetration resistance was determined by means of the ASAE 129 mm2 base area cone and seven other different cones with base sizes of 175, 144, 124, 98, 74, 39 and 26 mm2. The variability of the penetration resistance measurements increased as the size of the cone decreased. Nevertheless, the penetration resistance values proved to be independent of the cone used, as long as the size of the latter was equal to or greater than 98 mm2. This confirms the possibility of using cones with areas smaller than the ASAE standard when measurements are to be carried out in dry soils with high levels of mechanical resistance. The experimental data were used to develop an empirical model, a linear additive model on a log–log plane, capable of estimating soil bulk density depending on soil penetration resistance, soil moisture content and depth. This model has provided good results under field conditions and has allowed soil bulk density profiles and accumulated water profiles to be accurately estimated.  相似文献   

3.
Cone index, as determined by a cone penetrometer, is frequently used as a measure of soil strength. The index is a compound parameter involving components of shear, compressive and tensile strength and soil metal friction. In order to assess the effect of soil type and condition on the relative contributions of these components to penetration resistance, the forces required to push blunt and sharp probes into two soils under a range of moisture contents and bulk densities were investigated. The maximum penetration force in homogeneous soil was not uniquely related to dry bulk density or cohesion, but varied with soil moisture content.At high and low moisture contents, the soil tended to interact with the shaft of the penetrometer thus increasing the resistance to penetration. At low moisture content, bodies of compressed soil formed in front of the probe, effectively changing the probe geometry.It was concluded that interpretation of cone index in typical layered field soils is difficult. Even in homogeneous soils, the proportion of shear, compressive and tensile components that the cone index reflects varies with soil condition.  相似文献   

4.
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s ratio and Drucker–Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory – Auburn University (NSDL-AU) soil compaction model. The stress–strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair (‘slave-master’) algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m−3 and (2) 1.71 Mg m−3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU ‘virgin’ model.  相似文献   

5.
Effect of wetting and drying on soil physical properties   总被引:3,自引:0,他引:3  
Agricultural soils are subject to seasonal wetting and drying cycles. Effect of drying stress, as influenced by one cycle of wetting and drying, on physical properties of a clay–loam soil was investigated in the laboratory. The physical properties studied were soil bulk density, cone penetration resistance, shear strength, adhesion and aggregate size and stability. Three drying stress treatments were made by wetting air-dried soil of initial moisture content of 12% (on dry weight basis) to three different higher moisture contents, namely 27, 33 and 40%, and then drying each of them back to their original moisture content of 12%. Thus, the soil was subjected to three different degrees of drying stress. The results showed that the soil strength indicated by cone penetration resistance and cohesion, and soil aggregate size, increased with the degree of drying stress. However, the soil bulk density did not change significantly with the drying stress.  相似文献   

6.
This paper reviews experimental methods for the conversion of cone index measurements to bevameter parameters in support of vehicle soil/tire/track interactions for two general soil types, sand and lean clay. The accurate prediction of traction, motion resistance, and sinkage of tire/tracks off-road requires estimates of soil strength. Equipment used in the measurement of soil strength to support predictions of off-road mobility include the bevameter and the cone penetrometer. The portability of the cone penetrometer and rapid estimates of spatial/temporal variability in all terrain conditions make it an invaluable tool. The bevameter, a less portable tool, is used for the mechanical analysis of soils. The bevameter measures parameters defining soil strength in terms of cohesive modulus of soil deformation (kc), frictional modulus of soil deformation (kφ), exponent of soil sinkage (n), cohesion (c), angle of internal friction (φ), and the plate pressure at 1 in. (2.54 cm) of penetration (K) (Bekker, 1969). The field of terramechanics would greatly benefit from having the ability to convert cone penetrometer data in areas where bevameter parameters are difficult to collect. That ability to convert from cone index to bevameter parameters could be used for the large sets of existing cone index data to support determination of traction and motion resistance. This paper examines those methods for converting cone index to bevameter plate penetration parameters kc, kφ, and n.  相似文献   

7.
Determination of the soil pressure distribution around a cone penetrometer   总被引:2,自引:0,他引:2  
The objective of this paper was to investigate the pressure distribution around a cone penetrometer using a pressure sensing mat under laboratory conditions. The investigation was conducted under (1) constrained conditions using cylindrical split pipe molds and (2) unconstrained conditions using a soil box. These tests were conducted in Capay clay and Yolo loam soil containing two different moisture conditions and two compaction levels.In the constrained tests, a maximum radial pressure of 111 kPa was observed in the Capay clay soil with 3.4–4.3% d.b. moisture content and three blows of compaction (cone index value of 2040 kPa) when using the 41 mm diameter split pipe mold. These pressure levels decreased to 82 and 22 kPa, respectively, when 65 and 88 mm diameter molds were used. In both the Capay clay and Yolo loam tests, the average radial pressure and average cone index values showed similar trends.In the unconstrained tests, a maximum pressure of 9.0 kPa was observed in the Capay clay with 4.5% d.b. moisture content and three blows of compaction (cone index value of 550 kPa) at a horizontal distance of 25.4 mm from the vertical axis of the cone penetrometer and minimum pressure levels in the range of 0.2–0.3 kPa when the horizontal distance of the penetrometer was in the range of 56.8–66 mm. The pressure levels are much smaller than the ones obtained in the constrained tests and may suggest that the pressure distribution under field conditions is small at a distance of 25.4 mm or higher from the tip of the cone.The experimental data were statistically analyzed to identify significant factors. The results of the analysis for the constrained test indicated that the mold diameter and number of blows significantly increased the pressure readings within the soil mass. Increasing the mold diameter led to a decrease in the average radial pressure and increasing the number of blows contributed to an increase in the average radial pressure. In the unconstrained test, the average radial pressure distribution at a given point were significantly influenced by the horizontal distance of the point from the vertical axis passing through the center of the penetrometer shaft, soil type, and soil moisture content. Higher pressure values were obtained in the Capay clay tests compared to the Yolo loam tests. In all cases, the pressure levels were greater for the drier soil than for the moist soil.  相似文献   

8.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

9.
The effect of width on the rolling resistance of rigid wheels in sand is shown to be very strong, coefficient of rolling resistance increasing rapidly with width at each of the sinkage levels used in the experiments. Wheel skid also increased rapidly as wheel width increased. Prediction of measured results on the narrow wheels using the modified Bekker analysis was quite good although this is shown to be partly fortuitous. Poor correlation was found between measured values of coefficient of rolling resistance and the Freitag sand number. Very good prediction of measured values of coefficient of rolling resistance was found using an expression comprising the square root of the sinkage/dia ratio multiplied by a factor correcting for width/dia ratio. The square root of the sinkage/dia ratio is shown to be the value of coefficient of rolling resistance of a narrow wheel at shallow sinkage predicted from the modified Bekker analysis. It is also shown to be identical to the inverse of the Freitag clay number, with soil cone index value replaced by mean soil radial stress.  相似文献   

10.
Experiments were conducted on a Eudora silt loam to determine the effect of tracked and wheeled tractor traffic on cone penetration resistance and soil bulk density at three different soil-water content levels. Treatment plots were ripped to a depth of 0.45 m and irrigated 5 days prior to the experiment. Significant differences in penetration resistance and bulk density were observed between the treatments within the plowing depth (0.30 m). After the tractor passes, the average penetration resistance recorded was about 7.5% higher and the soil bulk density was about 3% higher in the wheel treatment plots. However, at the soil-water content level close to Proctor optimum (15% w/w), no significant difference was observed in the average penetration resistance of the two treatments.  相似文献   

11.
The behaviour of soils under a vehicle wheel was determined by measuring the density, moisture content, and the position of the data point. From the several thousands of data points, statistical models were established for dry density in terms of external pressure, moisture content, and position. The effect of slip was also obtained at the required situations. Separate models were determined for sand, sandy loam, loamy sand, and clay. For every soil type, there exists an optimum moisture content for worst compaction. Considering this, models were obtained for various categories.  相似文献   

12.
通过对南京地区大量粘土和粉质粘土样品热导率值的测试,分析了土体热导率与其含水量、孔隙比的相关关系。对影响土体导热值的因素作了详细分析,提出了根据土体含水量、孔隙比值计算土体热导率的经验计算公式。  相似文献   

13.
A motorized rheometer was developed for determining soil visco-plastic parameters that works on the principle of torsional shear applied to a standard vane with controlled strain rate. Rheological measurements were carried at different soil moisture contents (10%, 13%, 17% and 20% dry basis (gravimetric)) and soil compaction levels (100, 150, 200, 300 and 400 kPa) to find their effects on soil viscosity and yield strength. The values of viscosity of the clay loam soil (29% clay, 24% silt and 47% sand) were found to spread in the range of 53–283 kPa s, and yield stress variation had a span of 4–28 kPa. Increase in soil compaction was accompanied by a sharp increase in soil viscosity, while moisture content affected soil viscosity negatively. Effect of both these parameters was statistically significant (95% confidence interval). Yield stress was positively related to soil compaction and the effect was statistically significant. However, it was negatively related to moisture content and the effect was not statistically significant for the levels of moisture content tested.  相似文献   

14.
含粘粒砂土抗液化性能的试验研究   总被引:3,自引:0,他引:3  
通过对含粘粒砂土所作的试验研究, 包括: 粘粒矿物成分不同、粘粒含量不同的重塑土样所作的室内动三轴试验; X光衍射试验, 试验结果对比分析后, 得出了含粘粒砂土抗液化性能的特性。并得出以下结论: (1)粘粒矿物成分不同, 也引起砂土动力稳定性的变化; (2 )动剪应力强度与粘粒含量并非呈单调增加关系, 而呈抛物线型, 并给出回归方程; (3)含粘粒的砂土, 其抗液化能力最低点总是在粘粒含量 8.5~ 9.5 %之间。  相似文献   

15.
A new method has been developed for the determination of cone resistance under drained conditions. Numerical methods are used for the solution of the differential equations of plasticity theory for soils and for the determination of the stress states in the soil produced by the penetration of the cone. It is assumed that the stresses produced by the penetration of the cone remain ‘locked in’ the soil and constitute boundary conditions for further penetration. The computation starts with the cone base at the surface and is continued by successively incrementing the depth by a small amount. Charts are given for the computation of cone resistance in sands for various friction angles. The importance of the effect of the shear stresses generated at the surface of the cone and characterized by the interface friction angle, δ, is discussed in detail.  相似文献   

16.
黄河三角洲粉质土的动模量和阻尼比试验研究   总被引:1,自引:0,他引:1  
结合室内共振柱和动三轴实验,对黄河三角洲饱和原状粉质土体(粉土、粉砂、粉质粘土)动模量和阻尼比的影响因素和发展规律进行了详细的研究。研究表明,在粉粒和粘粒含量对动模量的共同影响中,粉粒含量起着举足起重的作用;侧限压力对归一化剪模比和阻尼比的影响均较显著,相比粘粒含量的影响不大。通过与Seed建议的砂土及饱和粘土的G/Gmax~γ曲线和λ~γ曲线进行对比,结果显示研究区的粉质土相比一般的砂土和饱和粘土而言,其动力变形特性更接近于砂土,但是与砂土也存在着非常明显的差异;其发展规律与其他地区沉积粉质土也较为不同,具有明显的区域性。采用修正了的Hard in-D rnevich模型和对数模型分别对G/Gmax~γ曲线和λ~γ曲线进行拟合,给出了三类粉质土的归一化动力变形G/Gmax~γ/γr关系曲线,对模型中有关参数的影响因素做了初步的探讨。  相似文献   

17.
A force platform, which can provide three dimensional forces and moments on its top surface, was used to study force transmitted by human gait below the soil surface in order to understand detonation of antipersonnel landmines. Soils of varying depth were packed on the top surface of the platform to measure the forces transferred from the soil surface. Experimental variables included subjects (people), soil depth, soil type, moisture content, and compaction level. Soils used in this study were sand and sandy loam. There were medium and high two compaction levels for each soil. Sandy loam soil included two moisture contents; sand tested involved two moisture contents and dry sand. Soil depth varies from 0 (bare platform) to 200 mm. Five subjects with different weights were selected and used in this study.The subsoil force and its duration were measured for different subjects at a depth up to 200 mm. The impulse in subsoil was then calculated and used in evaluating the effect of different subjects on the force transfer in soil. The results indicated that loose soil can transfer larger force to subsoil than dense soil; test results showed that heavier subjects also created larger subsoil forces than lighter ones. Whether the effect of soil depth on subsoil impulse was significant was depended on the soil conditions. For the sand with 5.5% moisture content and bulk density of 1800 kg/m3, soil depth significantly affected subsoil impulses. For the sandy loam soil, the mass of subject increased from 50 to 100 kg resulted in 100% increase in subsoil impulses at all four depths; for the sand, the mass of subject increased from 55 to 100 kg approximately. This resulted in 80% increase in subsoil impulses under all four depths regardless of moisture content and bulk density. The results of this study will helpful for designing new equipment and evaluating existing machines for neutralizing landmines.  相似文献   

18.
Experiments were conducted in a laboratory soil bin to evaluate the performance of coated floats in different soils. Two coating materials were studied, namely enamel and Teflon, and three soil types, namely clay, loam and sandy soil were used for testing. The forces required to overcome the drag of the floats and pull them over the soil surface were measured. The normal loads were varied to 25, 44 and 64 N. The effect of moisture content (db) was evaluated by varying the soil moisture from 21.2 to 62.4% for clay soil, 16.6 to 36.1% for loam soil and 0.7 to 13.8% for sandy soil. All tests were conducted at a constant speed of 0.20 m/s. The performance of the enamel coated float was superior to Teflon and uncoated floats in all soil conditions. In clay and loam soils, the drag force increased initially until the soil moisture content reached the plastic limit. The drag forces showed a decreasing trend once soil moisture exceeded the plastic limit. In sandy soil, the drag force increased with increase in moisture content. The overall reductions for the enamel coated float compared to uncoated float were from 4 to 64% in clay soil, 16 to 46% in loam soil and 26 to 45% in sandy soil. Besides this superior performance, the enamel coated float compared to the other floats showed excellent resistance to wear due to abrasion and superior scouring.  相似文献   

19.
静力触探锥头阻力的近似理论与实验研究进展   总被引:5,自引:0,他引:5  
崔新壮  丁桦 《力学进展》2004,34(2):251-262
锥头阻力在静力触探试验中扮演着十分重要的角色.从不同角度,对触探中锥头阻力的研究进行简要阐述,对承载力理论、空洞膨胀理论、应变路径法及运动点位错法等几种理论分析方法进行了回顾.另外,对数值分析和实验研究的进展情况进行了叙述.并对各种方法的适用性进行了比较.承载力理论虽然简单,但忽略了土的压缩性和探杆周围初始应力的增加,所以不能精确地模拟锥头的深层贯入.空洞膨胀理论提供了一个分析锥头阻力的简单而较精确的方法,它考虑了土的压缩性(或膨胀性)和锥头贯入过程中锥杆周围应力增加的影响.但这种方法是将锥头贯入与空洞膨胀之间做了一个等效模拟,所以不同的模拟方法,得到的结果差别较大.应变路径法能够有效解决饱和粘土中的不排水贯入,但不适用于砂土.运动点位错法因为考虑了部分排水,所以能较好地预测固结系数,但采用了线弹性分析,故位错法在其他方面的应用还需要大量的试验验证.有限元法在处理锥头贯入这类慢侵彻问题时缺乏一种很好的处理技术,导致它在进行破坏荷载计算时有显著的误差和数值计算困难.标定槽试验将在验证和建立锥头阻力与土的性能关系方面继续起到一个重要作用,但其结果需经过校正后才可应用到现场.最后对该领域的研究趋势进行了讨论.   相似文献   

20.
Variable load test data were used to evaluate the applicability of an existing forestry tire traction model for a new forestry tire and a worn tire of the same size with and without tire chains in a range of soil conditions. The clay and sandy soils ranged in moisture content from 17 to 28%. Soil bulk density varied between 1.1 and 1.4g cm−3 with cone index values between 297 and 1418 kPa for a depth of 140 mm. Two of the clay soils had surface cover or vegetation, the other clay soil and the sandy soil had no surface cover. Tractive performance data were collected in soil bins using a single tire test vehicle with the tire running at 20% slip. A non-linear curve fitting technique was used to optimize the model by fitting it to collected input torque data by modifying the coefficients of the traction model equations. Generally, this procedure resulted in improved prediction of input torque, gross traction ratio and net traction ratio. The predicted tractive performance using the optimized coefficients showed that the model worked reasonably well on bare, uniform soils with the new tire. The model was flexible and could be modified to predict tractive performance of the worn tire with and without chains on the bare homogeneous soils. The model was not adequate for predicting tractive performance on less uniform soils with a surface cover for any of the tire treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号