首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cutting of soil by a rotating wire analogous to the tip of a rotary tiller blade while cutting a two-dimensional soil slice over a range of ‘fetch-ratios’ (bite length/depth-ratios) in a quasi-static condition is presented. A theoretical models based on Mohr-Coloumb soil mechanics has been proposed to predict forces on the wire (tip). The model is dependent upon observed passive general shear failure of the soil slice towards the curved free surface of a previous cut and the lateral local shear failure towards the undeformed soil. The predicted forces in a frictional soil and in a pure cohesive medium (artificial clay) agreed well with experimental results.  相似文献   

3.
4.
Discrete Element Method (DEM) has been applied in recent studies of soil cutting tool interactions in terramechanics. Actual soil behavior is well known to be inexpressible by simple elemental shapes in DEM, such as circles for 2D or spheres for 3D because of the excessive rotation of elements. To develop a more effective model for approximating real soil behavior by DEM, either the introduction of a rolling resistance moment for simple elemental shape or the combination of simple elements to form a complex model soil particle shape cannot be avoided. This study was conducted to investigate the effects of elemental shape on the cutting resistance of soil by a narrow blade using 3D DEM. Six elemental shapes were prepared by combining unit spheres of equal elemental radius. Moreover, cutting resistance was measured in a soil bin filled with air-dried sand to collect comparative data. The elemental shape, with an axial configuration of three equal spheres overlapped with each radius, showed similar results of soil cutting resistance to those obtained experimentally for the six elemental shapes investigated.  相似文献   

5.
6.
A dynamic model for soil cutting by blade and tine   总被引:1,自引:0,他引:1  
A dynamic model for soil cutting resistance prediction by blade and tine was developed, taking account of shear rate effects both on soil shear strength and soil-metal friction, besides the conventional soil slice inertia, for both brittle and flow failure of soil. The model was verified with a series of tests in a soil bin with a blade and a tine, and the results were acceptable.  相似文献   

7.
Finite element analysis of plane soil cutting   总被引:1,自引:0,他引:1  
This study develops the finite element method (FEM) of solution to provide a theoretical means for determination of soil performance under the actions of a cutting blade—and the forces required to promote cutting. The developed FEM takes into account the effect of progressive and continuous cutting of the clay soil at the tip of the blade, with possible development of failure zones in the soil whenever the shear strength of the soil is exceeded. The solution provides detailed information on stress and deformation fields in the soil, together with tangential and normal pressures developed at the blade soil interface Correspondence between theoretically computed displacement fields and measured values has been obtained. In addition, the theoretically computed and experimentally measured values for forces developed in blade thrust are seen to be in close agreement.  相似文献   

8.
The paper presents an experimental study of the frontal resistance forces in soil cutting, with emphasis on their dependence on tool displacement during the loading and unloading stages under quasistatic and dynamic regimes. Laboratory tests on undisturbed soil, using specially developed equipment, showed that:During the loading stage, at pre-limiting levels of the frontal resistance force, the soil undergoes both reversible and residual deformations.At the onset of the unloading stage, the restoring force undergoes a downward jump.The limiting value of the frontal resistance force increases considerably in the cutting velocity interval of 0.1 to 3–5 mm/s; at higher velocities, up to 25 mm/s, this force slowly. At the initial velocity of 3 m/s, the limiting value of the frontal resistance force exceeds by about 20% its counterpart appearing at the velocity of 0.1 mm/s.The frontal resistance force is linearly related to the tool width and non-linearly to the depth of cutting.  相似文献   

9.
The phenomenon of soil adhesion occurs widely when terrain machines and construction machines work; this adhesion increases their working resistance. Bionics is one of the most effective methods to reduce resistance against soil. Several non-smooth convex form bulldozer blades were tested to study the effects of non-smooth characteristics on resistance reduction against soil. Under the same soil and test conditions, the draft forces of different non-smooth samples were obtained, and were lower than those of smooth samples. The sample with largest convex base diameter had the lowest draft force. The experiments with smooth and non-smooth samples were repeated to observe soil adhesion and test resistance. A minimum amount of soil adhered to the surface of the non-smooth sample, and the draft force varied smoothly. The smooth sample was different in soil adhesion and draft force.  相似文献   

10.
Computer Aided Engineering methods in earthmoving machines design and their automation require the development of soil-cutting models. These models both in two or three dimensions, static or dynamic, fitted for frictional or cohesive soils, must be mutually compatible and must function with soil transportation models and with machine locomotion characteristic models. In this work two different methods of soil cutting have been evaluated, both of them based on the classical wedge method, in order to verify their applicability to test conditions in the new soil bin facility of CEMOTER. From experimental results the possibility of using dynamic models of soil cutting in the frequency domain is discussed, to improve earthmoving machinery performance by automation and implementation of open and closed-loop control. After a preliminary analysis of a plane blade under different test conditions in sandy soil, soil cutting theoretical models of a simple implement are compared with respective scale models by tests performed in a soil bin facility at various operating speeds and depths, in order to investigate their applicability and the dynamic behaviour of the soil cutting force.  相似文献   

11.
12.
基于Schmitz理论的风叶气动设计研究   总被引:1,自引:0,他引:1  
李连波  陈涛  王凡  刘艳 《应用力学学报》2012,29(2):225-228,245
应用Schmitz理论进行叶片气动设计,考虑了风力机叶片的气动损失,用Schmitz理论推导出风力机叶片的基本设计参数的计算公式,并考虑了风力机在启动和空载时风力机的实际工作点偏离了设计点,对叶片的气动性能参数进行了修正。通过对200kW风力机的算例表明:随着叶片半径的增大,入流角逐渐减小;叶片弦长先增大后减小,修正后得到的风力机在非设计点处的推力、驱动力矩、功率与实际风力机的特性规律相符。  相似文献   

13.
A thermoelastoplastic analysis is made to study the surface waviness of orthogonal machine cutting. As a workpiece experiences heavy cutting, chips are formed incrementally in a steady fashion leaving a sinusoidal wavy surface as evidence of the varying thickness of the uncut chips. The finite difference method is applied to determine the temperature distribution in the chip and tool while a large deformation thermoelastoplastic finite element analysis is made to simulate the wave removing process whereby the wavy surface is modelled by saw-tooth shaped meshes. Determined are the chip geometry, residual stresses in the machined surface, temperature distributions in the chip and tool forces. The cutting forces are also calculated and they agree well with the test results.  相似文献   

14.
15.
以往矩形截面杆自由扭转问题的解仅在弹性力学中查到,本文从材料力学的教学法和便于应用的观点重新分析了该问题,得到了其材力力学的解,当$h/b \ge 6$时,可以满足工程应用的精度要求.  相似文献   

16.
17.
Based on the finite volume method, three methods for rotational region treatment were presented and validated by simulating two-dimensional accelerating rotational flows. Separate transient incompressible flows induced by cross-shaped blades during starting process were simulated using the dynamic mesh, sliding mesh and dynamic reference frame methods. The computing performance and stability of the three methods were evaluated by comparing numerical results, and the transient characteristics of the accelerating rotational flow were analysed numerically. Results showed that the starting process affected the flow structure and transient characteristics of the accelerating rotational flows. The sliding mesh method showed higher computational efficiency and accuracy compared with other methods, and could easily be extended to solve three-dimensional transient flows in hydraulic machineries under transient operations, such as start-up and shutdown.  相似文献   

18.
A field trial was conducted to examine the effect of initial soil water content and vegetative cover on soil disturbance caused by tracked military vehicles. Disturbance was measured as depth of rut produced. Soil disturbance increased as the number of passes and turns increased, but especially after turning manoeuvres. Greater disturbance occurred on reduced vegetation plots and with increasing initial soil water content. Simple regression analysis was undertaken to determine which factor had the greatest influence on disturbance.  相似文献   

19.
针对目前土体爆炸压密理论研究不够深入、施工中主要依靠工程经验确定爆炸参数的现状,建立了基于塑性力学和爆炸力学的土体爆炸压密模型,推得压密效果(压密范围、压密程度)与爆炸参数之间的关系式,并通过室外试验进行验证.在孔径为48 mm的炮孔中进行了不耦合系数分别为2.000、1.714、1.500、1.333、1.200、1...  相似文献   

20.

以高速摄影为主要手段,揭示直管中爆炸诱导气泡和射流的典型演变过程,并测试爆炸深度和爆炸能量对该现象的影响。研究发现直管中爆炸诱导的表面射流分为光滑和粗糙的两段,这区别于自由表面射流的形态;爆炸气泡的发展经历一个先膨胀再坍缩的过程,其中封闭坍缩以气泡顶部形成内向射流为特征。表面射流速度主要来自爆炸早期短时间内气泡膨胀赋予水体的冲量,且整体上与起爆能量成正相关,而与爆炸深度成反相关;用准一维的简化模型能够很好地描述它们之间的依赖关系,计算结果不仅在趋势上与实验结果一致,数值上也能很好吻合。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号