首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts.  相似文献   

2.
Panwar KS  Gaur JN 《Talanta》1967,14(1):127-129
The oxidation of pyruvic acid, levulinic acid, acetaldehyde, isobutyraldehyde and acetylacetone by vanadium(V) in aqueous solution on illumination with visible light is described. Pyruvic acid undergoes oxidation much more rapidly than does levulinic acid ; both give acetic acid. Acetaldehyde is more rapidly oxidized than is isobutyraldehyde, the former giving formic acid, and the latter, formic acid and acetone. Acetylacetone is converted into acetic acid. The oxidations are rapid and quantitative and may be used for the estimation of these carbonyl compounds.  相似文献   

3.
Thiols were converted into disulfide by the aerobic oxidation catalyzed by trichlorooxyvanadium in the presence of molecular sieves 3A.  相似文献   

4.
An efficient, selective and environmentally benign photocatalytic system in acetonitrile has been developed for aerobic oxidation of activated benzylic and allylic alcohols into their corresponding aldehydes and ketones without the need for a transition metal in moderate to excellent yields with a catalytic amount of iodine. Very high inter- and intramolecular chemoselectivities are observed when benzylic OH groups are oxidized in the presence of aliphatic (nonbenzylic) hydroxyls.  相似文献   

5.
Selective and controlled aerobic oxidation of activated benzyl alcohols to the corresponding aldehydes is achieved in refluxing CH3CN using catalytic amounts of MoO2Cl2(L)2 where L is DMSO, DMF or THF. The catalysis reactions are possible under open air in the absence of any other external co‐oxidants. However, bubbling of oxygen to the reaction mixture is useful in making the catalysis reaction sustained. Both activated and deactivated varieties of α‐substituted benzyl alcohols (secondary alcohols) give ketones in the same reaction conditions. The inexpensive catalyst is selective towards activated primary benzyl alcohols and also, being mild, stops the oxidation at the aldehyde stage, making it synthetically useful. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Primary alcohols and diols with various structures were subjected to transformations into esters, aldehydes, ketones, and lactones under the action of carbon tetrachloride in the presence of manganese compounds (MnCl2, MnO2, Mn(OAc)2, Mn(acac)3) and vanadium compounds (VCl5, V2O5, VO(acac)2) as catalysts. These transformation proceeded with the involvement of alkyl hypochlorites, which were generated in the course of oxidation of alcohols with carbon tetrachloride catalyzed by manganese or vanadium compounds. The optimum molar ratios between the catalyst and reagents were determined, and the reaction conditions for the highly selective synthesis of esters, aldehydes, ketones, and lactones from alcohols were found.  相似文献   

7.
The heterogeneous oxidation catalyzed by supported gold nanoparticles has been relatively well studied. In comparison, the oxidation of alcohols catalyzed by ligand-supported gold complexes was rarely reported. Herein a general method is demonstrated to oxidize secondary and primary benzyl and allylic alcohols to carbonyl compounds via Au(I) catalyzed reaction in air and water. Primary mechanistic studies indicated that the catalytic pathway is different from those catalyzed by solid-supported gold nanoparticles.  相似文献   

8.
A protocol for the aerobic oxidation of cumene to cumene hydroperoxide (CHP) catalyzed by metalloporphyrins is reported herein. Typically, the reaction was performed in an intermittent mode under an atmospheric pressure of air and below 130°C. Several important reaction parameters, such as the structure and concentration of metalloporphyrin, the air flow rate, and the temperature, were carefully studied. Analysis of the data obtained showed that the reaction was remarkably improved by the addition of metalloporphyrins, in terms of both the yield and formation rate of CHP while high selectivity was maintained. It was discovered that 4 or 5 h was the optimal reaction time when the reaction was catalyzed by monomanganese-porphyrin ((p-Cl)TPPMnCl) (7.20 × 10?5 mol/l) at 120°C with the air flow rate being 600 ml/min. From the results, we also found that higher concentration of (p-Cl)TPPMnCl, longer reaction time and higher reaction temperature were all detrimental to the production of CHP from cumene. Studies of the reaction kinetics revealed that the activation energy of the reaction (E) is around 38.9 × 104 kJ mol?1. The low apparent activation energy of the reaction could explain why the rate of cumene oxidation to CHP in the presence of metalloporphyrins was much faster than that of the non-catalyzed oxidation.  相似文献   

9.
10.
Research on Chemical Intermediates - An environmentally benign CuO-rectorite was prepared by calcining the co-precipitation product of Cu2+ with an acid-activated rectorite at pH 6. It could be...  相似文献   

11.
Five copper complexes [(L(1))(2)Cu(H(2)O)](ClO(4))(2) (1), [(L(1))Cu(H(2)O)(3)](ClO(4))(2) (1a), [(L(3))(2)Cu(H(2)O)](ClO(4))(2) (2), [(L(5))(2)Cu(H(2)O)](ClO(4))(2) (3) and [(L(6))(2)Cu](ClO(4)) (4) (where L(1) = 1,10-phenanthroline, L(3) = 1,10-phenanthroline-5,6-dione, L(5) = 1,10-phenanthrolinefuroxan and L(6) = 2,9-dimethyl-1,10-phenanthrolinefuroxan), and in situ prepared copper complexes of 2,9-dimethyl-1,10-phenanthroline (L(2)) or 2,9-dimethyl-1,10-phenanthrolinedione (L(4)) were used for aerial oxidation of primary alcohols to the corresponding aldehydes under ambient conditions. The copper catalysts have been found to catalyze a series of primary alcohols including one secondary alcohol with moderate turnover numbers and selectivity towards primary alcohols. Copper(ii) complexes 1 (or 1a) and 2 were found to be the better catalysts among all other systems explored in this study. A copper(ii)-superoxo species is implicated to initiate the oxidation reaction. Structural and electronic factors of 1,10-phenanthroline-based ligands affecting the catalytic results for aerial oxidation of alcohols are discussed.  相似文献   

12.
In a study of the behavior of tris(hydroxymethyl)-4-picoline (I) under the conditions of vapor-phase oxidation on a vanadium-tin oxide catalyst, it was found that with the addition of 150–250 mole of water and 125–200 mole of O2 per mole of I and a contact time of 0.35–0.45 sec, the main reaction product was isonicotinic acid (II), the yield of which amounted to 60–65% of theoretical, calculated on the I passed.For part XLVIII, see [1].  相似文献   

13.
A variety of tertiary, secondary and primary organonitrogen compounds have been efficiently and selectivity oxidized to their corresponding N-oxides, nitrones, and nitro compounds with molecular oxygen using methyltrioxorhenium as catalyst.  相似文献   

14.
Aerobic oxidation of thiols is efficiently catalyzed by diaryl tellurides such as bis(4-methoxyphenyl) telluride under photosensitized conditions to give the corresponding disulfides in good to excellent yields. In this catalytic system, the tellurone oligomer, produced by the reaction of a telluride with singlet oxygen, is assumed to be the active species and is capable of oxidizing 4 equiv of a thiol.  相似文献   

15.
Catalytic amount of vanadium reagent with tert-butylhydroperoxide as the oxidant was found to be an excellent oxidizing agent in aqueous medium. Vanadium pentoxide with aq tert-butylhydroperoxide readily oxidizes primary benzylic azides to the corresponding acids and secondary benzylic azides to the corresponding ketones in excellent yields. Further, vanadium pentoxide and aq tert-butylhydroperoxide combination turned out to be an effective catalyst for the oxidation of alcohols. Using vanadium pentoxide and aq tert-butylhydroperoxide primary alcohols were oxidized to the corresponding acids, whereas secondary alcohols underwent a smooth transformation to furnish corresponding ketones in excellent yields. All the oxidations are performed in water.  相似文献   

16.
17.
18.
Oxochromium(V) complexes of 5,10,15-tris(pentafluorophenyl)corrole and brominated derivatives oxygenate substrates (triphenylphosphine and norbornene) with concomitant production of chromium(III). Regeneration of CrVO by reaction of dioxygen with CrIII completes an aerobic catalytic cycle, with very large solvent effects; in acetonitrile, rapid initial turnovers observed initially are shut down by formation of CrIVO, while in toluene, THF, and methanol, relatively slow reactions are further inhibited by product formation.  相似文献   

19.
The oxidation of N-alkylamides by O(2), catalyzed by N-hydroxyphthalimide (NHPI) and Co(II) salt, leads under mild conditions to carbonyl derivatives (aldehydes, ketones, carboxylic acids, imides) whose distribution depends on the nature of the alkyl group and on the reaction conditions. Primary N-benzylamides lead to imides and aromatic aldehydes at room temperature without any appreciable amount of carboxylic acids, while under the same conditions nonbenzylic derivatives give carboxylic acids and imides with no trace of aldehydes, even at very low conversion. These results are explained through hydrogen abstraction by the phthalimide-N-oxyl (PINO) radical, whose reactivity with benzyl derivatives is governed by polar effects, so that benzylamides are much more reactive than the corresponding aldehydes. The enthalpic effect is, however, dominant with nonbenzylic amides, making the corresponding aldehydes much more reactive than the starting amides. The importance of the bond dissociation energy (BDE) of the O-H bond in NHPI is emphasized.  相似文献   

20.
Polyaniline supported vanadium complex 1 catalyzes efficiently the oxidation of alcohols to aldehydes and ketones in high yields under molecular oxygen in toluene at ca. 100 °C. The catalyst 1 can be recycled without loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号