首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient behavior of compressible gas– particle flows produced in shock tubes with particle-laden driver section is studied. Particular attention is focused on the time scales with which the solution approaches the equilibrium state. Theoretical estimates indicate that the gas and particle contact surfaces equilibrate first, followed by the shock wave, and finally by the expansion fan. The estimates are in good agreement with numerical simulations. The simulations also show that the approach to equilibrium condition of the shock speed is non-monotonic (monotonic) if the mass fraction of particles initially located in the driver section is below (above) a particle-diameter dependent critical value. For the speed of the particle contact surface, the reverse trends are observed.   相似文献   

2.
Thermal-stress induced phenomena in two-component material:Part Ⅱ   总被引:1,自引:1,他引:0  
The paper deals with analytical models of the elastic energy gradient Wsq representing an energy barrier. The energy barrier is a surface integral of the elastic energy density Wq. The elastic energy density is induced by thermal stresses acting in an isotropic spherical particle (q = p) with the radius R and in a cubic cell of an isotropic matrix (q = m). The spherical particle and the matrix are components of a multi-particle-matrix system representing a model system applicable to a real two-component material of a precipitation-matrix type. The multi-particle-matrix system thus consists of periodically distributed isotropic spherical particles and an isotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with a central spherical particle in each of the cubic cells. The dimension d of the cubic cell then corresponds to an inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent micro- structural characteristics of a real two-component material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural charac- teristics. The thermal stresses originate during a cooling pro- cess as a consequence of the difference am - ap in thermal expansion coefficients between the matrix and the particle, am and ap, respectively. The energy barrier Wsq is used for the determination of the thermal-stress induced strengthening aq. The strengthening represents resistance against com- pressive or tensile mechanical loading for am - ap 〉 0 or am - ap 〈 0. respectively.  相似文献   

3.
Thermal-stress induced phenomena in two-component material: part I   总被引:1,自引:0,他引:1  
The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular  相似文献   

4.
A single degree-of-freedom nonlinear mechanical model of the stick–slip phenomenon is studied when the Stribeck-type friction force is emulated by means of a digitally controlled actuator. The relative velocity of the slipping contact surfaces is considered as bifurcation parameter. The original physical system presents subcritical Hopf bifurcation with a wide bistable parameter region where stick–slip and steady-state slipping are both stable locally. Hardware-in-the-loop experiments are performed with a physical oscillatory system subjected to the emulated Stribeck forces. The effect of sampling time is studied with respect to the stability and nonlinear behavior of this experimental system. The existence of subcritical Neimark–Sacker bifurcations are proven in the digital system, the stability and bifurcation characteristics of the continuous and the digital systems are compared, and the counter-intuitive stabilizing effect of sampling time is shown both analytically and experimentally. The conclusions draw the attention to the limitations of hardware-in-the-loop experiments when the corresponding systems are strongly nonlinear.  相似文献   

5.
In start-up of steady shearing flow of two viscous unentangled liquids, namely low-molecular-weight polystyrene and -D-glucose, the shear stress catastrophically collapses if the shear rate is raised above a value corresponding to a critical initial shear stress of around 0.1–0.3 MPa. The time dependence of the shear stress during this process is similar for the two liquids, but visualization of samples in situ and after quenching reveals significant differences. For -D-glucose, the stress collapse evidently results from debonding of the sample from the rheometer tool, while in polystyrene, bubbles open up within the sample, as occurs in cavitation. Some similarities are pointed out between these phenomena and that of lubrication failure reported in the tribology literature.  相似文献   

6.
Nonlinear evolution of high-amplitude periodic disturbances in a boundary layer on a flat plate for Mach numberM=2 is studied. An anomalous downstream evolution of the disturbances is found, quasi-two-dimensional disturbances being most unstable. The obtained phase velocities of the waves are 30–40% greater than the phase velocities of the Tollmien-Schlichting waves. The nonlinear evolution of vortex waves is accompanied by an increase in steady disturbances from the source of controlled vibrations. High-frequency disturbances decay, and a periodic wave train degenerates downstream into a quasiharmonic wave train. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 91–98, September–October, 1999.  相似文献   

7.
Some salient properties of the inverse power law distribution, the exponential distribution, catastrophe distributions, and the relationships among them were explored and compared. Self-organizing events may display any of these distributions. Catastrophe functions and their distributions do not display fractional (fractal) dimensions. Thus it is possible to have self-organization without the fractal. An empirical example from leadership emergence research illustrated a situation where a power law distribution provided a poor characterization of the data, but a swallowtail catastrophe model did so quite well. The results call into question some simplistic assumptions about the relationships among fractals, inverse power laws, self-organization and so-called pink noise.  相似文献   

8.
Mauro Fabrizio 《Meccanica》2014,49(9):2079-2086
In this work, following the papers (Cortet et al., Phys Rev Lett 105:214501, 2010; Manneville, Dissipative structures and weak turbulence, 1990), we study the turbulence behavior in a fluid as a critical phenomenon related with a continuous phase transition. So that, we use the Ginzburg–Landau equation describing the evolution of the order parameter, which control the laminar–turbulence transition. While, the velocity is represented by a sum of two terms, the normal and the rotational (or turbulence) components. As a result, the rotational term is zero in the laminar phase. Then, a hydrodynamic model is formulated, which chooses as fundamental fields the components of velocity and a phase field function f. Moreover, we study the thermodynamic restrictions, a maximum theorem for the phase field and the role of the pressure in the phase transition. In the last section, we address the study of turbulence in Helium II, where it is possible to observe many analogies with the phenomena which occur in classical fluids  相似文献   

9.
Steel has a complex material behavior. Stress- and strain-dependent phase transformations, transformation-induced plasticity (TRIP), and its interactions with plasticity are important phenomena of both theoretical and practical interest, as they may cause distortion of work-pieces. These phenomena continue to be intensively studied both experimentally and theoretically. In order to simulate real processes like heat treatment of work-pieces, one has to include the relevant phenomena in a suitable bulk model. It is the aim of the current paper to contribute to the formulation of such a model in the context of macroscopic continuum mechanics and to discuss the capabilities. Due to the possible interaction (coupling) of TRIP and plasticity, the usual approach in plasticity without phase transformations has to be modified substantially. We apply a general approach for non-linear hardening, allowing to model observable effects of interaction of plasticity and TRIP. Besides this, we prove the thermodynamic consistency under sufficient conditions.  相似文献   

10.
The interaction of evaporating droplets and hot catalyst particles plays a major role in heterogeneously catalysed reactions.The liquid feed is injected into a gas–solid flow and is mixed with the catalyst.The interaction phenomena determine the evaporation time which should be minimised to keep the reactor vessel small.First measurements with a bed of fixed hot FCC-particles(fluid catalytic cracking)and two model fluids have been conducted.The interactions of ethanol and water droplets with the hot bed sur...  相似文献   

11.
Numerical simulation of fully developed hydrodynamics of a riser and a downer was carried out using an Eulerian–Lagrangian model, where the particles are modeled by the discrete element method (DEM) and the gas by the Navier–Stokes equations. Periodic flow domain with two side walls was adopted to simulate the fully developed dynamics in a 2D channel of 10 cm in width. All the simulations were carried out under the same superficial gas velocity and solids holdup in the domain, starting with a homogenous state for both gas and solids, and followed by the evolution of the dynamics to the heterogeneous state with distinct clustering in the riser and the downer. In the riser, particle clusters move slowly, tending to suspend along the wall or to flow downwards, which causes wide residence time distribution of the particles. In the downer, clusters still exist, but they have faster velocities than the discrete particles. Loosely collected particles in the clusters move in the same direction as the bulk flow, resulting in plug flow in the downer. The residence time distribution (RTD) of solids was computed by tracking the displacements of all particles in the flow direction. The results show a rather wide RTD for the solids in the riser but a sharp peak RTD in the downer, much in agreement with the experimental findings in the literature. The ensemble average of transient dynamics also shows reasonable profiles of solids volume fraction and solids velocity, and their dependence on particle density.  相似文献   

12.
Consider an infinite thermally conductive medium characterized by Fourier’s law, in which a subdomain, called an inclusion, is subjected to a prescribed uniform heat flux-free temperature gradient. The second-order tensor field relating the gradient of the resulting temperature field over the medium to the uniform heat flux-free temperature gradient is referred to as Eshelby’s tensor field for conduction. The present work aims at deriving the general properties of Eshelby’s tensor field for conduction. It is found that: (i) the trace of Eshelby’s tensor field is equal to the characteristic function of the inclusion, independently of the latter’s shape; (ii) the isotropic part of Eshelby’s tensor field over the inclusion of arbitrary shape is identical to Eshelby’s tensor field over a 2D circular or 3D spherical inclusion; (iii) when the medium is made of an isotropic material and when the inclusion has some specific rotational symmetries, the value of the Eshelby’s tensor field evaluated at the inclusion gravity center and the symmetric average of Eshelby’s tensor fields are both equal to Eshelby’s tensor field for a 2D circular or 3D spherical inclusion. These results are then extended, with the help of a linear transformation, to the general case where the medium consists of an anisotropic conductive material. The method elaborated and results obtained by the present work are directly transposable to the physically analogous transport phenomena of electric conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically identical phenomenon of anti-plane elasticity.  相似文献   

13.
Although the phenomenon of shock wave reflection was discovered more than a hundred years ago, active research related to this phenomenon still goes on in many countries in the world (e.g., Australia, Canada, China, Germany, Israel, Japan, Poland, Russia and United States of America). As a matter of fact the research activity increased so drastically in the past decade and a half that a special scientific meeting dedicated to better understanding the reflection phenomena of shock waves, namely The International Mach Reflection Symposium was initiated in 1981 and was held since then in the major research centers actively involved in the research of shock wave reflections. In the present paper the status of the research of the phenomenon of shock wave reflection will be discussed in general, and unresolved problems and future research needs will be pointed out.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

14.
Grazing behavior in soft impact dynamics of a harmonically based excited flexible cantilever beam is investigated. Numerical and experimental methods are employed to study the dynamic behavior of macro- and micro-scale cantilever beam–impactor systems. For off-resonance excitation at two and a half times the fundamental frequency, the response of the oscillating cantilever experiences period doubling as the separation distance or clearance between the beam axis and the contact surface is decreased. The nonlinear phenomenon is studied by using phase portraits, Poincaré sections, and spectral analysis. Motivated by atomic force microscopy, this general dynamic behavior is studied as a means to locating the separation distance corresponding to grazing where the contact force is minimized.  相似文献   

15.
Heat transfer in complex physical situations such as nucleate boiling, quenching and dropwise condensation is strongly affected by the presence of a liquid–vapor–solid triple contact line, where intense energy transfer and phase change occur. A novel experimental technique for the detection of the liquid–vapor–solid line in these situations is presented. The technique is based on high-speed infrared (IR) thermometry through an IR-transparent silicon wafer heater; hence the name DEPIcT, or DEtection of Phase by Infrared Thermometry. Where the heater surface is wet, the IR camera measures the temperature of the hot water in contact with the heater. On the other hand, where vapor (whose IR absorptivity is very low) is in contact with the heater, the IR light comes from the cooler water beyond the vapor. The resulting IR image appears dark (cold) in dry spots and bright (hot) in wetted area. Using the contrast between the dark and bright areas, we can visualize the distribution of the liquid and gas phases in contact with the heater surface, and thus identify the liquid–vapor–solid contact line. In other words, we measure temperature beyond the surface to detect phases on the surface. It was shown that even small temperature differences (∼1 °C) can yield a sharp identification of the contact line, within about 100 μm resolution. DEPIcT was also shown to be able to detect thin liquid layers, through the analysis of interference patterns.  相似文献   

16.
Shock polar analysis as well as 2-D numerical computation technique are used to illustrate a diverse flow topology induced by shock/shock interaction in a M = 9 hypersonic flow. New flow features associated with inviscid shock wave interaction on double-wedge-like geometries are reported in this study. Transition of shock interaction, unsteady oscillation, and hysteresis phenomena in the RR ↔ MR transition, and the physical mechanisms behind these phenomena are numerically studied and analyzed.  相似文献   

17.
18.
19.
Cracking phenomena in tensile-strained InxGa1?xAs epitaxial film on an InP substrate are analyzed via the formulation given in Part I [Lee, S., Choi, S.T., Earmme, Y.Y., 2006. Analysis of vertical cracking phenomena in tensile-strained epitaxial film on a substrate: Part I. Mathematical formulation. International Journal of Solids and Structures 43, 3401–3413], where the solution for a dislocation in an anisotropic trimaterial is used as a fundamental solution and the crack is modeled by the continuous distribution of dislocations. Misfit strains and stresses are evaluated as a function of indium content x in an InxGa1?xAs/InP system. A single crack and periodic cracks, respectively, induced by the misfit stresses are considered. The crack opening profile, the crack mouth displacement, and the energy release rate as a function of the crack length are obtained. The critical conditions for a single crack and periodic cracks, respectively, are thus obtained, and are found to depend on the film thickness, the crack length, and the period of the cracks. The results of these analyses are also compared with published data obtained from experiments.  相似文献   

20.
In this paper, we consider a (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada (gCDGKS) equation, which is a higher-order generalization of the celebrated Kadomtsev–Petviashvili (KP) equation. By considering the Hirota bilinear form of the CDGKS equation, we study a type of exact interaction waves by the way of vector notations. The interaction solutions, which possess extensive applications in the nonlinear system, are composed by lump wave parts and soliton wave parts, respectively. Under certain conditions, this kind of solutions can be transformed into the pure lump waves or the stripe solitons. Moreover, we provide the graphical analysis of such solutions in order to better understand their dynamical behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号