首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on a fixed Eulerian mesh. The solid’s deformation is tracked to compute elastic stresses by an overlapping Lagrangian mesh. In this way, the flow–structure interaction is formulated as a distributed body force and singular surface force acting on an otherwise purely fluid system. These forces, which depend on the solid elastic stress distribution, are computed on the Lagrangian mesh by a standard finite-element method and then transferred to the fixed Eulerian mesh, where the joint momentum and continuity equations are solved by a finite-difference method. The constitutive model for the solid can be quite general. For the force transfer, standard immersed-boundary and immersed-interface methods can be used and are demonstrated. We have also developed and demonstrated a new projection method that unifies the transfer of the surface and body forces in a way that exactly conserves momentum; the interface is still effectively sharp for this approach. The spatial convergence of the method is observed to be between first- and second-order, as in most immersed-boundary methods for membrane flows. The algorithm is demonstrated by the simulations of an advected elastic disk, a flexible leaflet in an oscillating flow, and a model of a swimming jellyfish.  相似文献   

2.
We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing immersed boundary methods: the proposed algorithms calculate and apply the force density in the extended solid domain to uphold the solid velocity and hence the boundary condition at the rigid-body surface. The principle of the embedded boundary algorithm allows us to solve the fluid equations on a Cartesian grid with a set of external forces spread onto the grid points occupied by the rigid structure. The proposed algorithms use the MAC (marker and cell) algorithm to solve the incompressible Navier-Stokes equations. Unlike projection methods, the MAC scheme incorporates the gradient of the force density in solving the pressure Poisson equation, so that the dipole force, due to the jump of pressure across the solid-fluid interface, is directly balanced by the gradient of the force density. We validate the proposed algorithms via the classical benchmark problem of flow past a cylinder. Our numerical experiments show that numerical solutions of the velocity field obtained by using the proposed algorithms are smooth across the solid-fluid interface. Finally, we consider the problem of a cylinder moving between two parallel plane walls. Numerical solutions of this problem obtained by using the proposed algorithms are compared with the classical asymptotic solutions. We show that the two solutions are in good agreement.  相似文献   

3.
We present in this paper a numerical scheme for incompressible Navier–Stokes equations with open and traction boundary conditions, in the framework of pressure-correction methods. A new way to enforce this type of boundary condition is proposed and provides higher pressure and velocity convergence rates in space and time than found in the present state of the art. We illustrate this result by computing some numerical and physical tests. In particular, we establish reference solutions of a laminar flow in a geometry where a bifurcation takes place and of the unsteady flow around a square cylinder.  相似文献   

4.
A new set of conservative 4th-order central finite differencing schemes for all the viscous terms of compressible Navier–Stokes equations are proposed and proved in this paper. These schemes are used with a 5th-order WENO scheme for inviscid flux and the stencil width of the central differencing scheme is designed to be within that of the WENO scheme. The central differencing schemes achieve the maximum order of accuracy in the stencil. This feature is important to keep the compactness of the overall discretization schemes and facilitate the boundary condition treatment. The algorithm is used to simulate the vortex-induced oscillations of an elastically mounted circular cylinder. The numerical results agree favorably with the experiment.  相似文献   

5.
An efficient numerical scheme to compute flows past rigid solid bodies moving through viscous incompressible fluid is presented. Solid obstacles of arbitrary shape are taken into account using the volume penalization method to impose no-slip boundary condition. The 2D Navier–Stokes equations, written in the vorticity-streamfunction formulation, are discretized using a Fourier pseudo-spectral scheme. Four different time discretization schemes of the penalization term are proposed and compared. The originality of the present work lies in the implementation of time-dependent penalization, which makes the above method capable of solving problems where the obstacle follows an arbitrary motion. Fluid–solid coupling for freely falling bodies is also implemented. The numerical method is validated for different test cases: the flow past a cylinder, Couette flow between rotating cylinders, sedimentation of a cylinder and a falling leaf with elliptical shape.  相似文献   

6.
In this study, a hybrid approach based on computational fluid dynamics (CFD) was used to investigate the aerodynamic forces associated with vortex-induced vibration (VIV) in a circular cylinder. The circular cylinder and the flow field were considered as two substructures of a system. Circular cylinder motion was produced in a wind tunnel test of the VIV prior to the numerical simulation; this motion was used as a known cylinder boundary condition and applied to the flow field. The flow field with the known moving boundary condition was then numerically simulated by the ANSYS CFX code. The transient aerodynamic coefficients of the circular cylinder with predetermined motion were obtained from the numerical simulation. To verify the feasibility and accuracy of the proposed hybrid approach and to calculate cylinder vibrations, the transient aerodynamic coefficients were applied to a single degree of freedom (SDOF) model of the circular cylinder. The oscillation responses of the circular cylinder from the calculated (SDOF model) and experimental results were compared, and the results indicate that the hybrid approach accurately simulated the transient aerodynamic coefficients of the circular cylinder. For further comparison, a nonlinear aerodynamic coefficient model based on a nonlinear least square technique was applied to the SDOF model. The nonlinear aerodynamic model can predict well the amplitude and lock-in region of the VIV of the circular cylinder model.  相似文献   

7.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   

8.
Shock formations are observed in granular avalanches when supercritical flow merges into a region of subcritical flow. In this paper we employ a shock-capturing numerical scheme for the one-dimensional Savage–Hutter theory of granular flow to describe this phenomenon. A Lagrangian moving mesh scheme applied to the nonconservative form of the equations reproduces smooth solutions of these free boundary problems very well, but fails when shocks are formed. A nonoscillatory central (NOC) difference scheme with TVD limiter or WENO cell reconstruction for the conservative equations is therefore introduced. For the avalanche free boundary problems it must be combined with a front-tracking method, developed here, to properly describe the margin evolution. It is found that this NOC scheme combined with the front-tracking module reproduces both the shock wave and the smooth solution accurately. A piecewise quadratic WENO reconstruction improves the smoothness of the solution near local extrema. The schemes are checked against exact solutions for (1) an upward moving shock wave, (2) the motion of a parabolic cap down an inclined plane, and (3) the motion of a parabolic cap down a curved slope ending in a flat run-out region, where a shock is formed as the avalanche comes to a halt.  相似文献   

9.
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier–Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.  相似文献   

10.

Improved Navier–Stokes characteristic boundary conditions (NSCBC) are formulated for the direct numerical simulations (DNS) of laminar and turbulent counterflow flame configurations with a compressible flow formulation. The new boundary scheme properly accounts for multi-dimensional flow effects and provides nonreflecting inflow and outflow conditions that maintain the mean imposed velocity and pressure, while substantially eliminating spurious acoustic wave reflections. Applications to various counterflow configurations demonstrate that the proposed boundary conditions yield accurate and robust solutions over a wide range of flow and scalar variables, allowing high fidelity in detailed numerical studies of turbulent counterflow flames.  相似文献   

11.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

12.
A new immersed boundary method based on vorticity–velocity formulations for the simulation of 2D incompressible viscous flow is proposed in present paper. The velocity and vorticity are respectively divided into two parts: one is the velocity and vorticity without the influence of the immersed boundary, and the other is the corrected velocity and the corrected vorticity derived from the influence of the immersed boundary. The corrected velocity is obtained from the multi-direct forcing to ensure the well satisfaction of the no-slip boundary condition at the immersed boundary. The corrected vorticity is derived from the vorticity transport equation. The third-order Runge–Kutta for time stepping, the fourth-order finite difference scheme for spatial derivatives and the fourth-order discretized Poisson for solving velocity are applied in present flow solver. Three cases including decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder in a fluid at rest are conducted to validate the method proposed in this paper. And the results of the simulations show good agreements with previous numerical and experimental results. This indicates the validity and the accuracy of present immersed boundary method based on vorticity–velocity formulations.  相似文献   

13.
We present the development of a sliding mesh capability for an unsteady high order (order ? 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the xy plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.  相似文献   

14.
In this paper, an improved two-level method is presented for effectively solving the incompressible Navier–Stokes equations. This proposed method solves a smaller system of nonlinear Navier–Stokes equations on the coarse mesh and needs to solve the Oseen-type linearized equations of motion only once on the fine mesh level. Within the proposed two-level framework, a prolongation operator, which is required to linearize the convective terms at the fine mesh level using the convergent Navier–Stokes solutions computed at the coarse mesh level, is rigorously derived to increase the prediction accuracy. This indispensable prolongation operator can properly communicate the flow velocities between the two mesh levels because it is locally analytic. Solution convergence can therefore be accelerated. For the sake of numerical accuracy, momentum equations are discretized by employing the general solution for the two-dimensional convection–diffusion–reaction model equation. The convective instability problem can be simultaneously eliminated thanks to the proper treatment of convective terms. The converged solution is, thus, very high in accuracy as well as in yielding a quadratic spatial rate of convergence. For the sake of programming simplicity and computational efficiency, pressure gradient terms are rigorously discretized within the explicit framework in the non-staggered grid system. The proposed analytical prolongation operator for the mapping of solutions from the coarse to fine meshes and the explicit pressure gradient discretization scheme, which accommodates the dispersion-relation-preserving property, have been both rigorously justified from the predicted Navier–Stokes solutions.  相似文献   

15.
吴晓笛  刘华坪  陈浮 《物理学报》2017,66(22):224702-224702
针对流固耦合问题,发展了基于浸入边界-多松弛时间格子玻尔兹曼通量求解法(immersed boundary method multi-relaxation-time lattice Boltzmann flux solver,IB-MRT-LBFS)的弱耦合算法.依据多尺度Chapman-Enskog展开,建立不可压宏观方程状态变量和通量与格子玻尔兹曼方程中粒子密度分布函数之间的关系;采用强制浸入边界法处理流固界面使固壁表面满足无滑移边界条件,根据修正的速度求解动量方程力源项;结构运动方程采用四阶龙格-库塔法求解.格子模型与浸入边界法的引入使流固耦合计算可以在笛卡尔网格下进行,无需生成贴体网格及运用动网格技术,简化了计算过程.数值模拟了单圆柱横向涡激振动、单圆柱及串列双圆柱双自由度涡激振动问题.结果表明,IB-MRT-LBFS能够准确预测圆柱涡激振动的锁定区间、振动响应、受力情况以及捕捉尾流场结构形态,验证了该算法在求解流固耦合问题的有效性和可行性.  相似文献   

16.
The rise of bubbles in viscous liquids is not only a very common process in many industrial applications, but also an important fundamental problem in fluid physics. An improved numerical algorithm based on the front tracking method, originally proposed by Tryggvason and his co-workers, has been validated against experiments over a wide range of intermediate Reynolds and Bond numbers using an axisymmetric model [J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 22 (2007) 769–795]. In the current paper, this numerical algorithm is further extended to simulate 3D bubbles rising in viscous liquids with high Reynolds and Bond numbers and with large density and viscosity ratios representative of the common air–water two-phase flow system. To facilitate the 3D front tracking simulation, mesh adaptation is implemented for both the front mesh on the bubble surface and the background mesh. On the latter mesh, the governing Navier–Stokes equations for incompressible, Newtonian flow are solved in a moving reference frame attached to the rising bubble. Specifically, the equations are solved using a finite volume scheme based on the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, and it appears to be robust even for high Reynolds numbers and high density and viscosity ratios. The 3D bubble surface is tracked explicitly using an adaptive, unstructured triangular mesh. The numerical model is integrated with the software package PARAMESH, a block-based adaptive mesh refinement (AMR) tool developed for parallel computing. PARAMESH allows background mesh adaptation as well as the solution of the governing equations in parallel on a supercomputer. Further, Peskin distribution function is applied to interpolate the variable values between the front and the background meshes. Detailed sensitivity analysis about the numerical modeling algorithm has been performed. The current model has also been applied to simulate a number of cases of 3D gas bubbles rising in viscous liquids, e.g. air bubbles rising in water. Simulation results are compared with experimental observations both in aspect of terminal bubble shapes and terminal bubble velocities. In addition, we applied this model to simulate the interaction between two bubbles rising in a liquid, which illustrated the model’s capability in predicting the interaction dynamics of rising bubbles.  相似文献   

17.
We present a local and point-wise scheme for imposing reflective boundary conditions to stationary internal boundaries for solving the reactive Euler equations on Cartesian grids. The scheme is presented in two and three dimensions and can run efficiently on parallel machines while still maintaining the same advantages over other methods for enforcing internal boundary conditions. Level sets are used to represent internal solid regions along with a new local node sorting algorithm that decouples internal boundary nodes by establishing their connectivity to other internal boundary nodes. This approach allows us to enforce boundary conditions via a direct procedure, removing the need to solve a coupled system of equations numerically. We examine the accuracy and fidelity of our internal boundary algorithm by simulating flows past various solid boundaries in two and three dimensions, showing good agreement between our numerical results and experimental data.  相似文献   

18.
A dynamic algorithm is proposed for three-dimensional packing of spherical solid particles. The particles are deposited within a specified region with a fixed rigid boundary. The velocity of each particle is proportional to its weight and forces due to contact of the particle with the boundary and neighbor particles. Dimensional analysis of the equations of particle motion is performed. The average density and coordination number distribution for an equilibrium packing are calculated. The dependence of these characteristics on viscosity, granulometric composition, and representation of initial conditions (numerical analogue of material pouring into a specified volume) is studied.  相似文献   

19.
周春华 《计算物理》2013,30(5):633-641
给出一种非定常流动数值模拟的网格自适应处理方法.在"求解流动方程-自适应调整网格"的流程中,引入预估-修正步.根据自适应周期内每个时间步上的流场预估解,计算单元上的事后误差估算值.建立考虑解演变的网格自适应指示器,并进行多层次单元加密-稀疏的动态网格自适应处理.在自适应网格上重新计算流场.每个自适应周期中,流动演变区域的网格获得加密;而前一个周期中的特征现象已离开区域的网格被稀疏.应用边界非协调的当地DFD(Domain-Free Discretization)方法求解流动方程.为验证网格自适应处理方法,针对静止圆柱和自推进游鱼的流动进行了数值实验.  相似文献   

20.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号