首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discrete ordinates method (DOM) and finite-volume method (FVM) are used extensively to solve the radiative transfer equation (RTE) in furnaces and combusting mixtures due to their balance between numerical efficiency and accuracy. These methods produce a system of coupled partial differential equations which are typically solved using space-marching techniques since they converge rapidly for constant coefficient spatial discretization schemes and non-scattering media. However, space-marching methods lose their effectiveness when applied to scattering media because the intensities in different directions become tightly coupled. When these methods are used in combination with high-resolution limited total-variation-diminishing (TVD) schemes, the additional non-linearities introduced by the flux limiting process can result in excessive iterations for most cases or even convergence failure for scattering media. Space-marching techniques may also not be quite as well-suited for the solution of problems involving complex three-dimensional geometries and/or for use in highly-scalable parallel algorithms. A novel pseudo-time marching algorithm is therefore proposed herein to solve the DOM or FVM equations on multi-block body-fitted meshes using a highly scalable parallel-implicit solution approach in conjunction with high-resolution TVD spatial discretization. Adaptive mesh refinement (AMR) is also employed to properly capture disparate solution scales with a reduced number of grid points. The scheme is assessed in terms of discontinuity-capturing capabilities, spatial and angular solution accuracy, scalability, and serial performance through comparisons to other commonly employed solution techniques. The proposed algorithm is shown to possess excellent parallel scaling characteristics and can be readily applied to problems involving complex geometries. In particular, greater than 85% parallel efficiency is demonstrated for a strong scaling problem on up to 256 processors. Furthermore, a speedup of a factor of at least two was observed over a standard space-marching algorithm using a limited scheme for optically thick scattering media. Although the time-marching approach is approximately four times slower for absorbing media, it vastly outperforms standard solvers when parallel speedup is taken into account. The latter is particularly true for geometrically complex computational domains.  相似文献   

2.
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps.First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation.3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.  相似文献   

3.
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß–Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.  相似文献   

4.
This paper presents a new computational framework for the simulation of solid mechanics on general overlapping grids with adaptive mesh refinement (AMR). The approach, described here for time-dependent linear elasticity in two and three space dimensions, is motivated by considerations of accuracy, efficiency and flexibility. We consider two approaches for the numerical solution of the equations of linear elasticity on overlapping grids. In the first approach we solve the governing equations numerically as a second-order system (SOS) using a conservative finite-difference approximation. The second approach considers the equations written as a first-order system (FOS) and approximates them using a second-order characteristic-based (Godunov) finite-volume method. A principal aim of the paper is to present the first careful assessment of the accuracy and stability of these two representative schemes for the equations of linear elasticity on overlapping grids. This is done by first performing a stability analysis of analogous schemes for the first-order and second-order scalar wave equations on an overlapping grid. The analysis shows that non-dissipative approximations can have unstable modes with growth rates proportional to the inverse of the mesh spacing. This new result, which is relevant for the numerical solution of any type of wave propagation problem on overlapping grids, dictates the form of dissipation that is needed to stabilize the scheme. Numerical experiments show that the addition of the indicated form of dissipation and/or a separate filter step can be used to stabilize the SOS scheme. They also demonstrate that the upwinding inherent in the Godunov scheme, which provides dissipation of the appropriate form, stabilizes the FOS scheme. We then verify and compare the accuracy of the two schemes using the method of analytic solutions and using problems with known solutions. These latter problems provide useful benchmark solutions for time dependent elasticity. We also consider two problems in which exact solutions are not available, and use a posterior error estimates to assess the accuracy of the schemes. One of these two problems is additionally employed to demonstrate the use of dynamic AMR and its effectiveness for resolving elastic “shock” waves. Finally, results are presented that compare the computational performance of the two schemes. These demonstrate the speed and memory efficiency achieved by the use of structured overlapping grids and optimizations for Cartesian grids.  相似文献   

5.
This paper explores numerical errors that arise when large-eddy simulation (LES) is used with adaptive mesh refinement (AMR). LES and AMR combined can reduce the computational cost of turbulence simulations compared to direct numerical simulations, but are rarely used together due to complications that arise with the application of the turbulence closure model at different grid resolutions. Errors appear at grid refinement interfaces due to dependence of computed quantities on the LES filter width and insufficient smoothness of the solution at the grid scale. Here, explicit filtering and approximate reconstruction of the unfiltered velocity field are used to mitigate the effects of these errors in a simulation of decaying isotropic turbulence advected past a grid refinement interface. In particular, different explicit filter types and levels of reconstruction are tested. Explicit filtering with zero-level reconstruction is found to produce the best long-term convergence to a uniform grid solution with minimum perturbation at the interface. Higher levels of reconstruction yield better near-interface convergence. When explicit filtering is used, the explicit filter width transition is more important than the grid spacing transition in terms of solution convergence and interface perturbation. These results inform the use of LES on more complicated AMR grids.  相似文献   

6.
The polynomial chaos decomposition of stochastic variables and processes is implemented in conjunction with optimal polynomial control of nonlinear dynamical systems. The procedure is demonstrated on a base-excited system whereby ground motion is modeled as a stochastic process with a specified correlation function and is approximated by its Karhunen-Loeve expansion. An adaptive scheme for stochastic approximation with polynomial chaos bases is proposed which is based on a displacement-velocity norm and is applied to the identification of phase orbits of nonlinear oscillators. This approximation is then integrated in the design of an optimal polynomial controller, allowing for the efficient estimation of statistics and probability density functions of quantities of interest. Numerical investigations are carried out employing the polynomial chaos expansions and the Lyapunov asymptotic stability condition based control policy. The results reveal that the performance, as gaged by probabilistic quantities of interest, of the controlled oscillators is greatly improved. A comparative study is also presented against the classical stochastic optimal control, whereby statistical linearization based LQG is employed to design the optimal controller. It is remarked that the proposed polynomial chaos expansion is a preferred approach to the optimal control of nonlinear random oscillators.  相似文献   

7.
A shell model is introduced to study a turbulence driven by the thermal instability (Rayleigh-Benard convection). This model equation describes cascade and chaos in the strong turbulence with high Rayleigh number. The chaos is numerically studied based on this model. The characteristics of the turbulence are analyzed and compared with those of the Gledzer-Ohkitani-Yamada (GOY) model. Quantities such as a mean value of total fluctuation energy, it's standard deviation, time averaged wave spectrum, probability distribution function, frequency spectrum, the maximum instantaneous Lyapunov exponent, distribution of instantaneous Lyapunov exponents, are evaluated. The dependences of these quantities on the error of numerical integration are also examined. There is not a clear correlation between the numerical accuracy and the accuracy of these quantities, since the interaction between a truncation error and an intrinsic nonlinearity of the system exists. A finding is that the maximum Lyapunov exponent is insensitive to a truncation error. (c) 1999 American Institute of Physics.  相似文献   

8.
In this article we present the extension of the a posteriori error estimation and goal-oriented mesh refinement approach from laminar to turbulent flows, which are governed by the Reynolds-averaged Navier–Stokes and kω turbulence model (RANS-) equations. In particular, we consider a discontinuous Galerkin discretization of the RANS- equations and use it within an adjoint-based error estimation and adaptive mesh refinement algorithm that targets the reduction of the discretization error in single as well as in multiple aerodynamic force coefficients. The accuracy of the error estimation and the performance of the goal-oriented mesh refinement algorithm is demonstrated for various test cases, including a two-dimensional turbulent flow around a three-element high lift configuration and a three-dimensional turbulent flow around a wing-body configuration.  相似文献   

9.
This paper presents an output-based adaptive algorithm for unsteady simulations of convection-dominated flows. A space–time discontinuous Galerkin discretization is used in which the spatial meshes remain static in both position and resolution, and in which all elements advance by the same time step. Error estimates are computed using an adjoint-weighted residual, where the discrete adjoint is computed on a finer space obtained by order enrichment of the primal space. An iterative method based on an approximate factorization is used to solve both the forward and adjoint problems. The output error estimate drives a fixed-growth adaptive strategy that employs hanging-node refinement in the spatial domain and slab bisection in the temporal domain. Detection of space–time anisotropy in the localization of the output error is found to be important for efficiency of the adaptive algorithm, and two anisotropy measures are presented: one based on inter-element solution jumps, and one based on projection of the adjoint. Adaptive results are shown for several two-dimensional convection-dominated flows, including the compressible Navier–Stokes equations. For sufficiently-low accuracy levels, output-based adaptation is shown to be advantageous in terms of degrees of freedom when compared to uniform refinement and to adaptive indicators based on approximation error and the unweighted residual. Time integral quantities are used for the outputs of interest, but entire time histories of the integrands are also compared and found to converge rapidly under the proposed scheme. In addition, the final output-adapted space–time meshes are shown to be relatively insensitive to the starting mesh.  相似文献   

10.
A nonparametric Bayesian approach is developed to determine quantum potentials from empirical data for quantum systems at finite temperature. The approach combines the likelihood model of quantum mechanics with a priori information on potentials implemented in the form of stochastic processes. Its specific advantages are the possibilities to deal with heterogeneous data and to express a priori information explicitly in terms of the potential of interest. A numerical solution in maximum a posteriori approximation is obtained for one-dimensional problems. As nonparametric estimates, the results depend strongly on the implemented a priori information.  相似文献   

11.
In this paper we report an efficient numerical method combining a staggered arbitrary Lagrangian Eulerian (ALE) formulation with the adaptive mesh refinement (AMR) method for materials modeling including elastic–plastic flows, material failure, and fragmentation predictions. Unlike traditional AMR applied on fixed domains, our investigation focuses on the application to moving and deforming meshes resulting from Lagrangian motion. We give details of this numerical method with a capability to simulate elastic–plastic flows and predict material failure and fragmentation, and our main focus of this paper is to create an efficient method which combines ALE and AMR methods to simulate the dynamics of material responses with deformation and failure mechanisms. The interlevel operators and boundary conditions for these problems in AMR meshes have been investigated, and error indicators to locate material deformation and failure regions are studied. The method has been applied on several test problems, and the solutions of the problems obtained with the ALE–AMR method are reported. Parallel performance and software design for the ALE–AMR method are also discussed.  相似文献   

12.
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the prediction of steady turbulent non-premixed compressible combusting flows in three space dimensions. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing turbulent compressible flows of reactive thermally perfect gaseous mixtures using a fully coupled finite-volume formulation on body-fitted multi-block hexahedral meshes. The compressible formulation adopted herein can readily accommodate large density variations and thermo-acoustic phenomena. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and to facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. For calculations of near-wall turbulence, an automatic near-wall treatment readily accommodates situations during adaptive mesh refinement where the mesh resolution may not be sufficient for directly calculating near-wall turbulence using the low-Reynolds-number formulation. Numerical results for turbulent diffusion flames, including cold- and hot-flow predictions for a bluff-body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting fine-scale features of complex turbulent non-premixed flames.  相似文献   

13.
A 3D parallel adaptive mesh refinement (AMR) scheme is described for solving the partial-differential equations governing ideal magnetohydrodynamic (MHD) flows. This new algorithm adopts a cell-centered upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solvers, and explicit multi-stage time stepping to solve the MHD equations in divergence form, providing a combination of high solution accuracy and computational robustness across a large range in the plasma β (β is the ratio of thermal and magnetic pressures). The data structure naturally lends itself to domain decomposition, thereby enabling efficient and scalable implementations on massively parallel supercomputers. Numerical results for MHD simulations of magnetospheric plasma flows are described to demonstrate the validity and capabilities of the approach for space weather applications  相似文献   

14.
This paper shows an accurate speech detection algorithm for improving the performance of speech recognition systems working in noisy environments. The proposed method is based on a hard decision clustering approach where a set of prototypes is used to characterize the noisy channel. Detecting the presence of speech is enabled by a decision rule formulated in terms of an averaged distance between the observation vector and a cluster-based noise model. The algorithm benefits from using contextual information, a strategy that considers not only a single speech frame but also a neighborhood of data in order to smooth the decision function and improve speech detection robustness. The proposed scheme exhibits reduced computational cost making it adequate for real time applications, i.e., automated speech recognition systems. An exhaustive analysis is conducted on the AURORA 2 and AURORA 3 databases in order to assess the performance of the algorithm and to compare it to existing standard voice activity detection (VAD) methods. The results show significant improvements in detection accuracy and speech recognition rate over standard VADs such as ITU-T G.729, ETSI GSM AMR, and ETSI AFE for distributed speech recognition and a representative set of recently reported VAD algorithms.  相似文献   

15.
In this paper is shown how to interpret the nonlinear dynamics of a class of one-dimensional physical systems exhibiting soliton behavior in terms of Killing fields for the associated dynamical laws acting as generators of torus knots. Soliton equations are related to dynamical laws associated with the intrinsic kinematics of space curves and torus knots are obtained as traveling wave solutions to the soliton equations. For the sake of illustration a full calculation is carried out by considering the Killing field that is associated with the nonlinear Schrodinger equation. Torus knot solutions are obtained explicitly in cylindrical polar coordinates via perturbation techniques from the circular solution. Using the Hasimoto map, the soliton conserved quantities are interpreted in terms of global geometric quantities and it is shown how to express these quantities as polynomial invariants for torus knots. The techniques here employed are of general interest and lead us to make some conjectures on natural links between the nonlinear dynamics of one-dimensional extended objects and the topological classification of knots.  相似文献   

16.
气相爆轰高阶中心差分-WENO组合格式自适应网格方法   总被引:1,自引:0,他引:1  
研究一种高阶中心差分-WENO组合格式,并采用自适应网格方法进行二维和三维气相爆轰波的数值模拟.采用ZND爆轰模型的控制方程为包含化学反应源项的Euler方程组.组合格式在大梯度区采用WENO格式捕捉间断,在光滑区采用高阶中心差分格式提高计算效率.采用一种基于流场结构特征的自适应网格.计算结果,表明这种方法同时具有高精度、高分辨率和高效率的特点.  相似文献   

17.
18.
We present a new algorithm for combining an anisotropic goal-oriented error estimate with the mesh adaptation fixed point method for unsteady problems. The minimization of the error on a functional provides both the density and the anisotropy (stretching) of the optimal mesh. They are expressed in terms of state and adjoint. This method is used for specifying the mesh for a time sub-interval. A global fixed point iterates the re-evaluation of meshes and states over the whole time interval until convergence of the space–time mesh. Applications to unsteady blast-wave and acoustic-wave Euler flows are presented.  相似文献   

19.
In this paper, we propose a compensated pixelwise calibration that integrates the effects of the camera housing temperature. The results of this calibration are compared on black body images to classic two points Non Uniformity Correction based calibrations, compensated or not. It is shown that the proposed approach leads to a significant improvement in the thermal resolution with a reduction in the mean error as well as the standard deviation. The approach is finally challenged on a real case measurement focusing on thermoelasticity. The gain in terms of accuracy measurement is highlighted by comparing the proposed calibration to classic calibrations and the scope of interest of this new calibration is discussed.  相似文献   

20.
An alternative approach to the Jaynes-Cummings model (JCM) with dissipation at a finite environmental temperature is presented in terms of a new master equation under Born-Markovian approximation. An analytic solution of the dissipation JCM is obtained. A variety ofphysical quantities of interest are calculated analytically. Dynamical properties of the atom and the field are investigated in some detail. It is shown that both cavity damping and environmental temperature strongly affect nonclassical effects in JCM, such as collapse and revivals of the atomic inversion, oscillations of the photon-number distribution, quadrature squeezing of the field and sub-Poissonian photon statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号