首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于熵条件二阶差分格式的嵌套网格分区算法   总被引:6,自引:0,他引:6  
以带熵条件的二阶TVD格式为基本格式,设计了三维曲线坐标下的Euler方程数值计算方法.对多个物体使用分区嵌套网格设计了相应的分区算法.所建立的算法适用于处理物体相互分离以及相互接触的定常与非定常流动问题.给出了绕两圆柱的超声速流动在两圆柱处于不同位置时的详细结果,并模拟了装配鸭舵火箭弹在超声速旋转飞行时的气动特性.  相似文献   

2.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

3.
In this work, the local grid refinement procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating unsteady viscous incompressible flows with complex immersed boundaries. A finite-volume formulation based on globally second-order accurate central-difference schemes is adopted here in conjunction with a two-step fractional-step procedure. The key aspects that needed to be considered in developing such a nested grid solver are proper imposition of interface conditions on the nested-block boundaries, and accurate discretization of the governing equations in cells that are with block-interface as a control-surface. The interpolation procedure adopted in the study allows systematic development of a discretization scheme that preserves global second-order spatial accuracy of the underlying solver, and as a result high efficiency/accuracy nested grid discretization method is developed. Herein the proposed nested grid method has been widely tested through effective simulation of four different classes of unsteady incompressible viscous flows, thereby demonstrating its performance in the solution of various complex flow–structure interactions. The numerical examples include a lid-driven cavity flow and Pearson vortex problems, flow past a circular cylinder symmetrically installed in a channel, flow past an elliptic cylinder at an angle of attack, and flow past two tandem circular cylinders of unequal diameters. For the numerical simulations of flows past bluff bodies an immersed boundary (IB) method has been implemented in which the solid object is represented by a distributed body force in the Navier–Stokes equations. The main advantages of the implemented immersed boundary method are that the simulations could be performed on a regular Cartesian grid and applied to multiple nested-block (Cartesian) structured grids without any difficulty. Through the numerical experiments the strength of the solver in effectively/accurately simulating various complex flows past different forms of immersed boundaries is extensively demonstrated, in which the nested Cartesian grid method was suitably combined together with the fractional-step algorithm to speed up the solution procedure.  相似文献   

4.
The ghost cell approaches (GCA) for handling stationary solid boundaries, regular or irregular, are first investigated theoretically and numerically for the diffusion equation with Dirichlet boundary conditions. The main conclusion of this part of investigation is that the approximation for the diffusion term has to be second-order accurate everywhere in order for the numerical solution to be rigorously second-order accurate. Violating this principle, the linear and quadratic GCAs have the following shortcomings: (1) restrictive constraints on grid size when the viscosity is small; (2) susceptibleness to instability of a time-explicit formulation for strongly transient flows; (3) convergence deterioration to zeroth- or first-order for solutions with high-frequency modes. Therefore, the widely-used linear extrapolation for enforcing no-slip boundary conditions should be avoided, even for regular solid boundaries. As a remedy, a simple method based on explicit jump approximation (EJA) is proposed. EJA hinges on the idea that a velocity-derivative jump at the boundary reduces to the value of the velocity-derivative at the fluid side because the velocity of the stationary boundary is zero. Although the time-marching linear system of EJA is not symmetric, it is strictly diagonal dominant with positive diagonal entries. Numerical results show that, over a large range of viscosity and grid sizes, EJA performs much better than GCAs in terms of stability and accuracy. Furthermore, the second-order convergence of EJA does not depend on viscosity and the spectrum of the solution, as those of GCAs do. This paper is written with enough details so that one can reproduce the numerical results.  相似文献   

5.
A dispersion-relation-preserving dual-compact scheme developed in Cartesian grids is applied together with the immersed boundary method to solve the flow equations in irregular and time-varying domains. The artificial momentum forcing term applied at certain points in cells containing fluid and solid allows an imposition of velocity condition to account for the motion of solid body. We develop in this study a differential-based interpolation scheme which can be easily extended to three-dimensional simulation. The results simulated from the proposed immersed boundary method agree well with other numerical and experimental results for the chosen benchmark problems. The accuracy and fidelity of the IB flow solver developed to predict flows with irregular boundaries are therefore demonstrated.  相似文献   

6.
The direct and adjoint operators play an undeniably important role in a vast number of theoretical and practical studies that range from linear stability to flow control and nonlinear optimization. Based on an existing nonlinear flow solver, the design of efficient and straightforward procedures to access these operators is thus highly desirable. In the case of compressible solvers, the use of high-order numerical schemes combined with complicated governing equations makes the derivation of efficient procedures a challenging and often tedious undertaking. In this work, a novel technique for the evaluation of the direct and adjoint operators directly from compressible flow solvers is presented and extended to include nonlinear differentiation schemes and turbulence models. The application to the incompressible counterpart is also discussed. The presented method requires minimal additional programming effort and automatically takes into account subsequent modifications in the governing equations and boundary conditions. The introduced methodology is demonstrated on existing numerical codes, and direct and adjoint global modes are calculated for three typical flow configurations. Implementation issues and the performance measures are also discussed. The proposed algorithm presents an easy-to-implement and efficient technique to extract valuable information for the quantitative analysis of complex flows.  相似文献   

7.
A spectral algorithm based on the immersed boundary conditions (IBC) concept is developed for simulations of viscous flows with moving boundaries. The algorithm uses a fixed computational domain with flow domain immersed inside the computational domain. Boundary conditions along the edges of the time-dependent flow domain enter the algorithm in the form of internal constraints. Spectral spatial discretization uses Fourier expansions in the stream-wise direction and Chebyshev expansions in the normal-to-the-wall direction. Up to fourth-order implicit temporal discretization methods have been implemented. It has been demonstrated that the algorithm delivers the theoretically predicted accuracy in both time and space. Performances of various linear solvers employed in the solution process have been evaluated and a new class of solver that takes advantage of the structure of the coefficient matrix has been proposed. The new solver results in a significant acceleration of computations as well as in a substantial reduction in memory requirements.  相似文献   

8.
A new immersed boundary method based on vorticity–velocity formulations for the simulation of 2D incompressible viscous flow is proposed in present paper. The velocity and vorticity are respectively divided into two parts: one is the velocity and vorticity without the influence of the immersed boundary, and the other is the corrected velocity and the corrected vorticity derived from the influence of the immersed boundary. The corrected velocity is obtained from the multi-direct forcing to ensure the well satisfaction of the no-slip boundary condition at the immersed boundary. The corrected vorticity is derived from the vorticity transport equation. The third-order Runge–Kutta for time stepping, the fourth-order finite difference scheme for spatial derivatives and the fourth-order discretized Poisson for solving velocity are applied in present flow solver. Three cases including decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder in a fluid at rest are conducted to validate the method proposed in this paper. And the results of the simulations show good agreements with previous numerical and experimental results. This indicates the validity and the accuracy of present immersed boundary method based on vorticity–velocity formulations.  相似文献   

9.
A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.  相似文献   

10.
In this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for simulation of viscous compressible flows. In the solver, the finite volume method is applied to solve the Navier-Stokes equations. Different from conventional Navier-Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model, while the viscous flux is still approximated by conventional smooth function approximation. The present work overcomes the two major drawbacks of existing LBFS [28–31], which is used for simulation of inviscid flows. The first one is its ability to simulate viscous flows by including evaluation of viscous flux. The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux, which takes a value close to zero in the boundary layer and one around the strong shock wave. Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.  相似文献   

11.
We present a GPU accelerated solver for simulations of bluff body flows in 2D using a remeshed vortex particle method and the vorticity formulation of the Brinkman penalization technique to enforce boundary conditions. The efficiency of the method relies on fast and accurate particle-grid interpolations on GPUs for the remeshing of the particles and the computation of the field operators. The GPU implementation uses OpenGL so as to perform efficient particle-grid operations and a CUFFT-based solver for the Poisson equation with unbounded boundary conditions. The accuracy and performance of the GPU simulations and their relative advantages/drawbacks over CPU based computations are reported in simulations of flows past an impulsively started circular cylinder from Reynolds numbers between 40 and 9500. The results indicate up to two orders of magnitude speed up of the GPU implementation over the respective CPU implementations. The accuracy of the GPU computations depends on the Re number of the flow. For Re up to 1000 there is little difference between GPU and CPU calculations but this agreement deteriorates (albeit remaining to within 5% in drag calculations) for higher Re numbers as the single precision of the GPU adversely affects the accuracy of the simulations.  相似文献   

12.
We present the development of a sliding mesh capability for an unsteady high order (order ? 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the xy plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.  相似文献   

13.
研究翼型绕流的转捩预测方法,对于翼型流动细节的精确模拟和气动力的准确计算以及精细化设计均具有十分重要的意义.采用动模态分解(dynamic mode decomposition,DMD)代替线性稳定性理论(linear stability theory,LST)与eN方法结合,不需要求解稳定性方程,成为一种数据驱动的翼型边界层转捩预测新方法,称为DMD/eN方法.在原有方法的基础上,改进了DMD网格线生成方法和扰动放大N因子的积分策略,并将RANS求解器与改进的DMD/eN方法进行耦合,实现了翼型定常绕流转捩预测自动化.采用该方法对LSC72613跨声速自然层流翼型以及NLF0416低速自然层流翼型在不同攻角下的绕流进行转捩预测,转捩点计算结果均与实验值和LST/eN方法吻合良好.该方法计算得到的N值增长曲线与LST/eN方法的包络线也较为吻合,进一步验证了积分策略的正确性.改进的DMD/eN方法可作为自然层流翼型设计的新的有力工具.   相似文献   

14.
An improved penalty immersed boundary (pIB) method has been proposed for simulation of fluid–flexible body interaction problems. In the proposed method, the fluid motion is defined on the Eulerian domain, while the solid motion is described by the Lagrangian variables. To account for the interaction, the flexible body is assumed to be composed of two parts: massive material points and massless material points, which are assumed to be linked closely by a stiff spring with damping. The massive material points are subjected to the elastic force of solid deformation but do not interact with the fluid directly, while the massless material points interact with the fluid by moving with the local fluid velocity. The flow solver and the solid solver are coupled in this framework and are developed separately by different methods. The fractional step method is adopted to solve the incompressible fluid motion on a staggered Cartesian grid, while the finite element method is developed to simulate the solid motion using an unstructured triangular mesh. The interaction force is just the restoring force of the stiff spring with damping, and is spread from the Lagrangian coordinates to the Eulerian grids by a smoothed approximation of the Dirac delta function. In the numerical simulations, we first validate the solid solver by using a vibrating circular ring in vacuum, and a second-order spatial accuracy is observed. Then both two- and three-dimensional simulations of fluid–flexible body interaction are carried out, including a circular disk in a linear shear flow, an elastic circular disk moving through a constricted channel, a spherical capsule in a linear shear flow, and a windsock in a uniform flow. The spatial accuracy is shown to be between first-order and second-order for both the fluid velocities and the solid positions. Comparisons between the numerical results and the theoretical solutions are also presented.  相似文献   

15.
We present artificial boundary conditions for the numerical simulation of compressible flows using high-order accurate discretizations with the discontinuous Galerkin (DG) finite element method. The construction of the proposed boundary conditions is based on characteristic analysis and applied for boundaries with arbitrary shape and orientation. Numerical experiments demonstrate that the proposed boundary treatment enables to convect out of the computational domain complex flow features with little distortion. In addition, it is shown that small-amplitude acoustic disturbances could be convected out of the computational domain, with no significant deterioration of the overall accuracy of the method. Furthermore, it was found that application of the proposed boundary treatment for viscous flow over a cylinder yields superior performance compared to simple extrapolation methods.  相似文献   

16.
This paper describes the implementation of immersed boundary method using the direct-forcing concept to investigate complex shock–obstacle interactions. An interpolation algorithm is developed for more stable boundary conditions with easier implementation procedure. The values of the fluid variables at the embedded ghost-cells are obtained using a local quadratic scheme which involves the neighboring fluid nodes. Detailed discussions of the method are presented on the interpolation of flow variables, direct-forcing of ghost cells, resolution of immersed-boundary points and internal treatment. The method is then applied to a high-order WENO scheme to simulate the complex fluid–solid interactions. The developed solver is first validated against the theoretical solutions of supersonic flow past triangular prism and circular cylinder. Simulated results for test cases with moving shocks are further compared with the previous experimental results of literature in terms of triple-point trajectory and vortex evolution. Excellent agreement is obtained showing the accuracy and the capability of the proposed method for solving complex strong-shock/obstacle interactions for both stationary and moving shock waves.  相似文献   

17.
基于预处理HLLEW格式的全速域数值算法   总被引:2,自引:0,他引:2  
基于HLLEW(Harten-Lax-Van Leer-Einfeldt-Wada)格式引入预处理技术发展适合求解全速域流场的三维Navier-Stokes求解器.引入低速预处理技术,重新构造HLLEW格式的耗散项,给出预处理后的HLLEW格式,并根据预处理后的雅克比矩阵构造相应的隐式时间推进方程.利用预处理方法求解NACA 4412低速不可压流动与RAE 2822跨声速可压缩流动,并与实验结果及原有方法的计算结果对比.结果表明:预处理HLLEW格式不仅提高低速不可压缩流动的计算效率和精度,也保持了对可压缩流动的处理能力,是一种适用于全速域流场数值模拟的有效方法.  相似文献   

18.
在开源计算流体力学C++工具包OpenFOAM环境下开发了低磁雷诺数条件下的磁流体求解器,并进行了验证。采用投影算法求解动量方程和压力泊松方程;采用非结构网格同位相容守恒算法求解电势泊松方程、感应电流和洛伦兹力;采用边界耦合方法求解流固耦合电势场。通过对均匀磁场下导电方管和导电圆管内的完全发展磁流体层流的数值模拟和解析解的对比,对求解器进行了验证。进一步对非均匀强磁场作用下导电方管和导电圆管内完全发展磁流体层流进行了数值模拟,并与ALEX实验结果进行了比较。数值解和实验结果吻合良好。所开发的求解器可用于复杂结构强磁场作用下磁流体的数值模拟研究。  相似文献   

19.
We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier–Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier–Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton’s method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L2 least-squares functional and L2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation.  相似文献   

20.
To simulate two-dimensional viscous incompressible flows based on a scheme of blob splitting and merging, we developed a vortex method and employed a fast multipole method to speed the computation of velocities. The diffusion of the vortex sheet induced at a solid wall by the no-slip boundary conditions is first modeled according to the analytical solution of Koumoutsakos and then converted into discrete blobs in the vicinity of the wall. To prevent the vorticity from entering the solid body, we introduce a concept residual circulation in a sense that only a partial circulation of the vortex sheet is diffused into the flow field; the rest remains at the wall. Blobs near the wall are thus avoided. Blobs near the wall that might cause large fluctuations in the strength of the vortex sheet are handled similarly. The solver thus developed requires no grid-based remeshing. We applied this solver to simulate the flow induced with an impulsively initiated circular cylinder; the results agree satisfactorily with those of previous experimental and numerical investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号