首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
F.H. ElBatal  Y.M. Hamdy  S.Y. Marzouk 《Journal of Non》2009,355(50-51):2439-2447
Undoped and transition metals (TM 3d)-doped lead phosphate glasses were prepared. Ultraviolet–visible absorption spectra were measured in the range 200–1100 nm before and after successive gamma irradiation. Experimental results indicate that the undoped lead phosphate glass reveals before irradiation strong and broad ultraviolet absorption which is related to the co-sharing of absorption due to both trace iron impurities and lead ions (Pb2+). In the TM-doped glasses, characteristic absorption bands are obtained in both the UV and/or visible regions due to each respective TM ion in addition to that observed by the base undoped UV absorption. Gamma irradiation produces with the undoped glass a prominent induced ultraviolet broad band centered at about 300 nm originating mostly from the contribution of trace iron impurities and the visible spectra reveal markedly high shielding behavior towards successive gamma irradiation, due to the presence of both high content of heavy Pb2+ ions and the sharing of phosphate as a partner. With TM-doped samples, the observed induced bands are virtually varying and related to the type of the sharing TM ions. Infrared absorption spectra reveal in the undoped and TM-doped glasses characteristic structural phosphate groups mainly consisting of metaphosphate and pyrophosphate units. Transition metals are assumed to cause depolymerization of the phosphate glass network with different ratios but the changes in IR spectral data are limited due to the low doping level. Gamma irradiation of the samples is assumed to cause changes in the bond angles or bond lengths of the structural phosphate units within network as evident in the variation of the intensities of the IR bands.  相似文献   

2.
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd–PSS films were processed using the acid of poly(styrene sulfonate) – H–PSS and neodymium nitrate – Nd(NO3)3; the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV–Vis–NIR spectral region presents typical electronic transitions of Nd3+ ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N–O groups in the range of 1400–720 cm?1, prove the permanence of Nd(NO3)x, with x = 1, 2 and/or 3, in the H–PSS matrix. UV–Vis site selective photoluminescence data indicate that the incorporation of Nd3+ introduces a blue shift in PSS emission (325–800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd3+ reabsorption and energy transfer effects between the PSS matrix and Nd3+ were also observed. The IR emission of Nd–PSS films at 1076 nm (4F3/2  4I11/2) present constant efficiency, independent on Nd3+ concentration. The Judd–Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd3+. Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix.  相似文献   

3.
The local structure around neodymium in an aluminoborosilicate glass bearing 3.6 mol% Nd2O3 is studied by optical absorption spectroscopy and EXAFS at the Nd LIII- and K-edges. The influence of the nature of alkalis (M+ = Li+, Na+, K+, Rb+, Cs+) and alkaline-earths (M2+ = Mg2+, Ca2+, Sr2+, Ba2+) on the coordination sphere of Nd3+ ions in the glass is particularly investigated. The Nd3+ sites are well-defined with NdO mean distances of 2.46 ± 0.03 Å, whatever the alkali and alkaline-earth ion type except Li+ and Mg2+, for which glasses exhibit slightly more disordered Nd sites and longer NdO distances (2.49 ± 0.03 Å). Using bond valence considerations, a model is proposed for the Nd site, and consists in 7–8 non-bridging oxygens (NBO), every NBO being charge compensated by 2–3 alkalis and alkaline-earths. The NdO mean distance is adjusted according to the mean field strength of these cations, to avoid overbonding of the NBO’s. A glass series with varying Ca2+/Na+ concentration ratio shows that Nd3+ cations are able to maintain this average coordination site even at high alkaline-earth content.  相似文献   

4.
Structure and optical properties of MoO3-doped lead borate glasses which contain high PbO content (60, 70 and 80%) have been studied using Fourier transform infrared (FTIR) and ultraviolet–visible (UV–VIS) spectroscopic tools. FTIR spectra reveal absorption bands which are characteristic for various structural units of borate network, mainly BO3 triangles and BO4 tetrahedra, in addition to the PbOn (where n = 3 and/or 4) structural units. UV–VIS optical absorption spectra reveal broad intense charge transfer UV bands due to Pb2 + ions in the range 320–385 nm. Within this range, molybdenum ions, preferably Mo3 + and Mo5 +, can interfere at about 360–385 nm. Additionally, molybdenum ions give a weak visible band at about 850–860 nm. The optical absorption spectra of the studied glasses show marked resistance to successive gamma irradiation up to 5 Mrad. This shielding behavior can be related to the present high content of the high atomic mass Pb2 + ions. Changes in the atomic structure before and after gamma irradiation are described and explained.  相似文献   

5.
《Journal of Non》2007,353(13-15):1402-1406
Fluorophosphate glasses of composition P2O5–K2O–MgO–Al2O3–AlF3 and P2O5–K2O–MgO–Al2O3–BaF2 were prepared with different Nd3+ ion concentrations. The absorption and emission spectra in the UV–VIS–NIR region were measured for these glasses. Judd–Ofelt analysis has been carried out using the absorption spectra of 1.0 mol% Nd3+-doped glasses to evaluate the radiative properties for some luminescent levels of the Nd3+ ion. The stimulated emission cross-sections of the 4F3/2  4I11/2 laser transition for the present glasses are found to be higher than for other Nd3+-doped glasses. Branching ratio calculations also revealed the potentiality of the 4F3/2  4I11/2 transition for laser action in these glasses. The observed concentration quenching of the lifetime of the 4F3/2 level is explained as a result of cross-relaxation process between the Nd3+ ions.  相似文献   

6.
Mechanisms of the compositional dependence of blue emission from Nd3+/Tm3+ co-doped Ge–Ga–S–CsBr chalcohalide glasses were investigated. The blue upconversion emissions (centered at 475 nm) due to the Tm3+: 1G4  3H6 transition decreased as the CsBr/Ga ratio in glasses while the other upconversion emissions from the Nd3+ ions increased. Changes in the local environment of rare-earth ions incurred by the CsBr addition significantly increased the excited state absorption within Nd3+ ions. This resulted in the decrease in the Nd3+  Tm3+ energy transfer rates that led to the large decrease in blue upconversion emission.  相似文献   

7.
CuO doped lead borate glasses of the composition PbO 70%–B2O3 30% with varying CuO contents were prepared. UV–visible and infrared spectroscopic studies were measured before and after successive gamma irradiation with two different doses namely 2 and 8 Mrad. The experimental results indicate that the undoped sample reveals strong UV–near visible absorption while copper doped samples show additional broad visible band due to (Cu2 +) ions.FT infrared absorption spectrum reveals vibrational bands due to triangular and tetrahedral borate groups together with the sharing of Pb–O vibrations.CuO-doped glasses have been found to show a shielding behavior towards the effects of progressive gamma irradiation causing the maintenance of the spectral curves. The changes in the UV–visible and infrared spectral data are discussed in relation to the states of copper ions and structural evolution caused by the change in glass composition including the CuO.  相似文献   

8.
The paper opens up a series of papers on the origin and parameters of spectral features forming the absorption of photo-thermo-refractive (PTR) glasses in the UV. Problems to be cleared for gaining further insight into the spectroscopic manifestations of species responsible for the photo-induced processes in PTR glasses are discussed. The samples of bromine-containing and bromine-free PTR glass matrices are synthesized and their absorption spectra in the 28,500 to 50,000 cm–1 region are recorded. The dispersion analysis of the spectra is conducted based on the convolution model for the complex dielectric function of glasses. The matrix electronic transitions that set the real part of the complex dielectric function and form the intrinsic absorption tail of the matrix are simulated with a series of effective oscillators. Spectral features forming the total absorption spectrum of PTR glass matrices in the 28,500 to 50,000 cm–1 region are deconvoluted. These features are (i) the intrinsic absorption tail, (ii) for the bromine-containing matrix, the low-wavenumber wing of an envelope around ~ 51,400 cm–1 covering the bromine-related spectral feature(s), (iii) Fe2+- and Fe3+-related impurity bands, and also (iv) a structureless absorption mostly due to the high-wavenumber wings of other impurity bands below 28,500 cm–1.  相似文献   

9.
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 °C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet–blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials.  相似文献   

10.
Rongrong Xu  Ying Tian  Lili Hu  Junjie Zhang 《Journal of Non》2011,357(11-13):2489-2493
TmF3 doped TeO2–ZnO–La2O3 (TZL) glasses and fibers have been prepared by the conventional melt-quenching and suction casting methods, respectively. 2 μm emission properties and energy transfer mechanisms of the TZL glasses and fibers have been analyzed and discussed. The oscillator strength, Judd–Ofelt parameters, radiative transition probability and radiative lifetime of Tm3+ have been calculated based on the absorption spectra and Judd–Ofelt theory. The maximum emission cross-section of Tm3+ is 6.9 × 10?21 cm2 near 2 μm. Emission spectra have been obtained from both TZL fibers and bulk glass when excited with a 794 nm pump. The results of 2 μm emission spectra indicate that the line width of Tm3+ measured in fibers is narrower than that in the bulk glass sample. The peak position of the emission spectra shifts to longer wavelength with increment of the fiber length.  相似文献   

11.
40PbO–(10 ? x)PbF2–50 SiO2:xWO3 (where x = 1 to 7 mol%) glasses are prepared in the glass forming region. Spectroscopic studies (UV–Vis absorption, ESR, IR) are carried out for these glasses. Interesting changes are observed in the spectroscopic parameters of these glasses when the concentration of WO3 is changing in the glass matrix. Two absorption bands are observed around at 830 and 620 nm. ESR signal are measured at room temperature for these glasses, the strength of the signal is increased and hyperfine splitting is resolved with increasing the concentration of WO3 in the glass matrix. IR transmission gives valuable information about the nature of bonds in the glass matrix. The physical parameters along with spectroscopic parameters are measured.  相似文献   

12.
Glasses of the (20 ? x)CaO–xSrO–(20 ? y)Na2O–60B2O3 ? y (CSNB) system with (5  x  15) mol% and y = 0.1 mol% of V2O5 were characterized by X-ray diffraction (XRD), EPR (Electron Paramagnetic Resonance), Optical absorption Spectra and FT-IR (Fourier transform Infrared Spectroscopy) studies. EPR spectra of all the glass samples exhibit resonance signals characterstic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in CSNB glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry. Spin-Hamiltonian parameters ‘g’ and ‘A’ were evaluated. The Optical band energy (Eopt) and Urbach energy (ΔE) were calculated from their ultra violet edges. By correlating EPR and Optical data the molecular orbital coefficients have been evaluated. IR spectra of these glasses were analyzed in order to identify the contribution of each component to the local structure that determines the physical properties of these glasses.  相似文献   

13.
《Journal of Non》2006,352(23-25):2631-2636
(Fluoride)phosphate and borosilicate glasses of high intrinsic transparency in the deep ultraviolet (UV), were doped with 50–5000 ppm of the 4d- and 5d-ions Zr, Nb, Ta, Mo, or W. All of these ions absorb strongly in the UV. Samples plates were irradiated by UV lasers and the as a consequence generated various extrinsic and intrinsic defects were characterized by optical and EPR spectroscopy. The laser induced transmission changes depend not only on the glass matrix, but also on the valence of the dopants. Only fully oxidized d0-ions are observed in fluoroaluminate glasses. Laser irradiation photoreduces the d0-ions to extrinsic electron-centers (EC). Laser induced transmission changes extend from the UV up to 600 nm in the visible. The dopants are easily reduced to lower valences in metaphosphate glasses. Extrinsic hole centers (HC) replace intrinsic HC in samples containing the reduced transition metal ions. The strong transmission changes seen below 300 nm arise from intrinsic EC and extrinsic HC. The few remaining intrinsic HC (300–600 nm) recombine rapidly with EC or transform into more stable extrinsic HC. Borosilicate glasses show the formation of intrinsic boron oxygen hole center in the EPR spectra and of intrinsic HC and EC in the optical spectra. The d1-ion Mo5+ is the only identified reduced dopant species in the borosilicate glasses. The band intensity of intrinsic EC in relation to intrinsic HC is correspondingly highest for the Mo-doped samples, in which extrinsic HC are generated.  相似文献   

14.
《Journal of Non》2007,353(24-25):2397-2402
Sm-doped borosilicate glasses exposed to β-irradiation with doses from 8 × 105 up to 4 × 109 Gy have been studied by luminescence, Raman and electron paramagnetic resonance (EPR) spectroscopies. The luminescence spectra for pristine and irradiated glasses reveal that the β-irradiation process affects valence state of samarium ions. Intense emission at 684 and 727 nm excited by Ar+ laser (514.5 nm) due to the transition of Sm2+ ion was observed after irradiation. Relative proportion of Sm2+ ions estimated as a function of both Sm2O3 content and irradiation dose has the tendency to increase with increasing irradiation dose. In contrast, the EPR spectra of the studied samples reveal a decrease of the defect content, which are mostly hole defects, produced during irradiation, as a function of Sm2O3 content. Finally, the addition of Sm2O3 leads to a decrease of the Si–O–Si bending vibration modes shift and polymerisation changes under irradiation.  相似文献   

15.
《Journal of Non》2005,351(49-51):3716-3724
Li2S + GeS2 + GeO2 ternary glasses have been prepared and a wide glass-forming range was obtained. The glass transition temperatures increase with the GeO2 concentration in the glasses. The vibrational modes of both bridging (Ge–S–Ge) and non-bridging (Ge–S) sulfurs are observed in Raman and IR spectra of binary Li2S + GeS2 glasses. Additions of GeO2 to this binary glass increase the bridging oxygen band (Ge–O–Ge) at the expense of decreasing the bridging sulfur band (Ge–S–Ge), whereas the bands associated with the non-bridging sulfurs (Ge–S) remain constant in intensity up to high GeO2 concentrations. At higher concentrations of GeO2 (⩾60%), the non-bridging oxygen band, which is not observed at low and intermediate GeO2 concentrations, appears and grows stronger. From these observations, it is suggested that the added lithium ions favor the non-bridging sulfur sites over the oxygen sites to form non-bridging sulfurs, whereas the added oxygen prefers the higher field strength Ge4+ cation to form bridging Ge–O–Ge bonds. The structural groups in the Li2S + GeS2 + GeO2 glasses that are consistent with results of Raman and IR spectra are described and are used to develop a structural model of these glasses.  相似文献   

16.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

17.
《Journal of Non》2005,351(49-51):3752-3759
Alkali fluoroborate glass systems containing manganese cations have been thoroughly investigated in order to obtain information about the structural role of manganese in such glass hosts. The amorphous phase of the prepared glass samples R2O–RF–B2O3:MnO (with R = Li and Na) was confirmed from their X-ray diffraction. From the infrared spectra of these glass systems it was concluded that the glass structure contains two group of bands; one due to trigonal BO3 units and the second due to the tetrahedral BO4 units. As manganese was introduced, replacing lithium or sodium, it acts as a network modifier and the intensity of the second group of bands increases at the expense of the first group of bands. The optical absorption spectra of R2O–RF–B2O3:MnO exhibited two conventional absorption bands; one due to Mn2+ ions and the other due to Mn3+ ions. The ESR spectra of these glasses showed a six-line hyper-fine structure centered at g = 2.01 (due to Mn2+ ions) and another signal at g = 4.3 (due to Mn3+ ions). The intensity of optical absorption bands and the ESR signal due to Mn2+ ions decreases with increasing MnO concentration indicating the conversion of Mn2+ ions into Mn3+ ions in the glass network. The thermoluminescence studies on these glass systems showed a quenching of TL output with increase in the concentration of MnO. All the obtained results were discussed on the basis of the glass structure and the conversion of Mn2+ into Mn3+ ions with increasing concentration of MnO in the glass systems.  相似文献   

18.
《Journal of Non》2007,353(5-7):506-509
We report on fabrication of Er3+-activated LaF3 nanocrystals in transparent glasses using an original technique, which combines both heat treatment, below glass crystallization temperature, and ultraviolet laser irradiation at 244 nm. The main advantage of this method is to control the spatial localization of the nanoparticles in the glass sample, whereas annealing solely at the crystallization temperature leads to a fully crystallized glass sample. Thermal differential analysis was used to determine the crystallization temperature of the sample. The photoluminescence spectra behaviour of Er3+ ions, collected from the UV-irradiated and unirradiated regions, allowed us to follow and to distinguish the structural changes in the glass network under heat treatment and ultraviolet exposure.  相似文献   

19.
《Journal of Non》2006,352(38-39):4062-4068
Glasses with the base composition 16Na2O · 10CaO · 74SiO2 doped with copper and iron or copper and manganese were studied by high temperature UV–vis–NIR spectroscopy. The spectra exhibited distinct absorption bands attributed to the respective transition metal ions present (Cu2+, Fe2+, Fe3+, Mn3+). In glasses doped with only one polyvalent element, the absorption decreases linearly with increasing temperature, the absorption bands are shifted to smaller wave numbers and get broader. In glasses doped with two types of transition metals, the situation is the same up to a temperature of around 550 °C. At larger temperature, the Cu2+-absorption in glasses also co-doped with iron increases again, while in glasses doped with both copper and manganese the absorption is approximately the same as in glasses solely doped with copper. It is shown that this is due to redox reactions between polyvalent species. These reactions are frozen in at temperatures <550 °C.  相似文献   

20.
《Journal of Non》2007,353(16-17):1592-1597
Glasses in the binary system (100  x)SbPO4xWO3 (20  x  60, x in mol%) have been prepared and characterized. Differential thermal analysis (DTA) shows that the glass transition temperature, Tg, increases from 412 °C, for samples containing 20 mol% of WO3, to 481 °C observed for glass containing 60 mol%. Sample containing 40 mol% in WO3 were observed to be the most stable against devitrification. The structural organization of the glasses has been studied by using Fourier transform infra-red (FTIR), Raman, 31P Magic angle spinning (MAS) and spin echo nuclear magnetic resonance (NMR) spectroscopies. Results suggest two distinct networks comprising the glass structure, one with high SbPO4 content and the other characteristic of the highest WO3 content samples. The glasses present photochromic properties. Colour changes are observed for samples after exposure to ultraviolet or visible laser light. XANES, at L1 absorption edge of tungsten, suggests partial reduction from W6+ to W5+ species during the laser irradiation. The photochromic effects and the colour changes, promoted by laser excitation, are reversible and easily removed by heat for during 1 h at 150 °C. Subsequent ‘write/erase’ cycles can be done without degradation of the glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号