首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ferroelectric-to-paraelectric phase transition in poly(vinylidene fluoride-trifluoroethylene) copolymers has been investigated using calorimetric and dielectric technics. In these materials, as it is well known, the ferro- and paraelectric phases coexist at large temperature intervals, which produces a smearing of the physical anomalies within the transition region. Thus, in order to treat our data, we have used an extended Landau-Devonshire treatment, which has provided a quantitative analysis of the macroscopic behavior of the systems. In particular, the Landau expansion parameters, the sample crystallinities, the spontaneous polarizations, and the coercive electric fields have been estimated for the copolymers with 25, 30, and 40 mol% of trifluoroethylene. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The ferroelectric and piezoelectric properties of melt-quenched unoriented poly(vinylidene fluoride-trifluoroethylene) (73 : 27) copolymer films as a function of the number of poling cycles have been studied. The investigation revealed that quenched films exhibit a decrease in D-E hysteresis behavior as the number of poling cycles increases when the samples are poled at room temperature. Corresponding decreases in remanent polarization, Pr, as well as small increases in the coercive field, Ec, were observed as the material was subjected to successive poling cycles. The piezoelectric coefficients, d31 and e31, also decreased as the number of poling cycles increased. In addition, a clear reduction in the “apparent” Curie transition temperature between unpoled and poled material was observed. Preliminary evidence indicates that films quenched from the melt to below Tc do not form a stable ferroelectric crystal phase as previously believed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2671–2679, 1997  相似文献   

3.
Thermoreversible gelation behavior of blend of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) in γ-butyrolactone solution was studied. Sol-gel transition temperature increased with the increase of polymer concentration, but was independent of the blend ratio of two polymers. An equation for gelation rate was derived, assuming that the gelation is a first-order reaction and that the gelation rate obeys an Arrhenius type. According to the equation, the growth index of gelation and supercooling temperature had a dominant effect on gelation rate. The growth index of gelation, which was calculated from the dependence of activation energy on the supercooling temperature in the isothermal gelation, varied with the blend ratio of two polymers. Growth index of gelation larger than 2 was obtained for the blend gels studied in this experiment. It may suggest that the multidimensional growth of gels occurs in such polymer blend solutions. X-ray diffraction and differential scanning calorimetry measurements showed existence of separate crystals due to each component of polymer in the blend gels. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The thermal and dielectric behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymers near the ferroelectric-to-paraelectric phase transition are investigated for samples with 20, 25, 30, and 40 mol% trifluoroethylene (TrFE). The data suggest that the transition becomes continuous for a particular composition near 50 mol% TrFE. Experimental data are sensitive to thermal history (kinetics of crystallization, and kinetics and cycling over the structural transition). It is found that several anomalies are present at the structural change, and in particular the 30 mol% TrFE sample shows the most marked anomalies. These phenomena can be attributed to defects, but another possibility would be the existence of an intemediate supplementary phase. Both hypotheses are discussed.  相似文献   

5.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

6.
After annealing the solution cast P(VDF-TrFE) films at elevated temperatures, which were synthesized via a full hydrogenation process from P(VDF-CTFE) with a composition of VDF/TrFE = 80/20(mol%), a series of P(VDF-TrFE) films were fabricated in present work. The crystalline and ferroelectric phases of the films were carefully characterized and their dielectric, ferroelectric and piezoelectric properties were systematically investigated. The improved crystalline and ferroelectric phases in the films induced by annealing at elevated temperatures are responsible for the significant improved electric properties of the films. The optimized annealing temperature is found to be 130 °C and the best performance including the highest dielectric constant of 12.5 at 1 kHz, the largest maximum polarization of 11.21 μC/cm~2 and remnant polarization of 7.22 μC/cm~2, the lowest coercive electric field of 56 MV/m, and the highest piezoelectric coefficient of -25 pC/N is observed.  相似文献   

7.
We demonstrate homogeneous and uniform liquid crystal (LC) alignment on poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] films using ion-beam (IB) irradiation and a performance improvement of twisted nematic (TN) cells using IB-irradiated PVDF-TrFE films. Spontaneous ferroelectricity of the PVDF-TrFE films was modified by IB irradiation, which affected the LC alignment properties. The variation in the pre-tilt angles of the LC molecules on the IB-irradiated PVDF films is attributed to surface reformation, including defluorination and oxidation because the pre-tilt angles of LC molecules can be controlled by adjusting the fluorine content. The results of contact angle measurements supported this phenomenon. A 58% reduction in the switching voltage was observed for TN cells, indicating that the IB-irradiated PVDF-TrFE films are a promising candidate for use as an alignment layer.  相似文献   

8.
Polymer-dispersed liquid crystals (PDLCs) of ferroelectric poly(vinylidene fluoride-trifluoroethylene) and nematic 4-cyano-4?-n-hexylbiphenyl (6CB) or 4-cyano-4?-n-pentylbiphenyl (5CB) were prepared to study the effect of the remanent polarisation of the polymer on the liquid crystal alignment. We measured the macroscopic alignment of the liquid crystal molecules in the thickness direction by means of Infrared Transition-Moment Orientational Analysis. Electrical poling at 100 V/µm caused an increased order parameter up to 0.15. After subsequent annealing above the nematic-to-isotropic phase-transition temperature, the order parameter was reduced to 0.02. Nevertheless, the order parameter was still higher than for non-poled film indicating a slight orientation in thickness direction. Both values are lower than those expected from model calculations. In agreement with dielectric measurements, we attribute this result to the shielding effect of mobile charge carriers within the liquid crystal inclusions.  相似文献   

9.
Poly (vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] has three crystal forms, including paraelectric α, ferroelectric β, and γ phases. In previous studies, the properties and performances of P(VDF-TrFE) have been the focus of research. However, the formation mechanism and regulation mode of various crystal forms remain unclear. Therefore, it is an important topic for further research to elucidate, summarize, and prospect the polymorphism of P(VDF-TrFE) and regulate the crystal forms. This review systematically summarizes the crystalline structure and phase transition between ferroelectric and paraelectric phase of P(VDF-TrFE) crystals; discusses the influence of annealing, blending and electric field on the crystallinity, selection of polymorphic crystals, and phase transition behavior between them; reviews the effects of annealing, melt-recrystallization, substrate and nanoconfinement on the crystal orientation. Finally, the effects of the crystal structure of P(VDF-TrFE) on its properties are briefly summarized.  相似文献   

10.
For both water and heavy water adsorption and absorption on crystalline poly(vinylidene fluoride with trifluoroethylene (30%)), P(VDF-TrFE 70:30), two distinctly different adsorption sites have been identified by thermal desorption spectroscopy. One adsorbed water species resembles ice and there is also an absorbed water species that interacts more strongly with the polymer thin film, and in addition, there is a polymer surface (polymer to ice interface) water species. We find that there is H/D exchange between the water or heavy water molecules and the ferroelectric polymer (largely -(CH2-CF2)-), particularly at the polymer surface.  相似文献   

11.
利用傅立叶变换红外光谱(FT-IR)研究聚偏氟乙烯与聚三氟乙烯共聚薄膜[P(VDF0.80-TrFE0.20)]的电子辐照和再结晶处理过程中分子链构型变化和化学变化, 为深入探讨辐照的改性机理提供依据. 研究发现, 辐照后薄膜分子链全反构型百分含量随吸收剂量增大而迅速减少, TG构型和T3G构型百分含量显著增多. 而当吸收达一定剂量时, 三种构型相对含量基本不再变化, 表明高剂量辐照时样品极性回升不依赖分子链构型中全反型的含量的增多, 而是和高交联度的边界效应有关. 再结晶过程中分子链构型变化恰好和辐照效应产生的变化相反, 并且形成了更加稳定的C=C共轭结构.  相似文献   

12.
Water ice is observed to order at the copolymer ferroelectric poly(vinylidene difluoride-trifluoroethylene) surface. The successful growth of crystalline thin films of water on these polymer surfaces implicates water to polymer dipole interactions. These ice thin films are sufficiently ordered for experimental identification of the wave vector dependence in the electronic band structure of hexagonal ice. The significant band dispersion, of about 1 eV, suggests strong overlap of molecular orbitals between adjacent water molecules in the ice film. The presence of dipole interactions with adsorbate water is consistent with the possibility of water acting as a spectator to surface ferroelectric transitions in this system.  相似文献   

13.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

14.
The viscosity behaviour of dilute dimethylformamide solutions of poly(vinylidene fluoride)-poly (methyl methacrylate) and poly(vinylidene fluoride)-polystyrene has been studied at 25°C. The polymer concentration ranges are such that neither phase separation nor microgel formation occurs, although we are very close to theta conditions. The intrinsic viscosity and viscosity interaction parameter of the ternary mixtures have been calculated. The estimation of the compatibility of the above polymer pairs has been studied based on: a) specific viscosities; b) viscosity interaction parameters, according to Krigbaum and Wall formalism, and c) viscosity interaction parameters of a system formed by a dilute probe polymer in the presence of a matrix polymer and a small molecule solvent.  相似文献   

15.
Flurbiprofen loaded PCL/PVP blend microspheres were prepared by o/w solvent evaporation method using various concentrations of gelatin as emulsifying agent. Microsphere recovery decreased with a decrease in the concentration of the emulsifier in the dispersion. Encapsulation efficiency and drug loading of microspheres increased with decrease in concentration of emulsifying agent. Hydration rate, encapsulation efficiency and drug loading of microspheres increased with increase in concentration of PVP. Rheological properties showed free flowing nature of microspheres. SEM (Scanning electron microscope) revealed microspheres were discrete, spherical and became porous with decrease in concentration of emulsifying agent but smooth with higher concentration of emulsifying agent. FTIR (Fourier transform infrared spectroscopy) spectra of pure and encapsulated flurbiprofen in all formulation showed no significant difference in characteristic peaks, suggesting stability of flurbiprofen during encapsulation process. X-RD (X-ray powder diffractometry) of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating dispersion at molecular level and hence decrease in the crystallinity of drug in microspheres. Microspheres showed an enteric nature at pH 1.2 and a sustained release pattern at pH 6.8. Rapid drug release was observed in microspheres with higher concentration of PVP (polyvinylpyrrolidone), PVP acts as channeling agent. Formulation with low concentration of emulsifying agent also showed a fast release due to porous structure. Drug release kinetics followed zero order at pH 1.2 while at pH 6.8 Higuchi model was best fitted and was found non fickian.  相似文献   

16.
The effect of HCl on the rate of thermal decomposition of poly(vinylidene chloride) (PVDC) in nitrobenzene solution was measured with the object of determining the catalytic activity of HCl. Unlike those reports dealing with PVC decompositions, this study shows that in the absence of a cocatalyst, molecular HCl does not catalyze the decomposition of PVDC. In the presence of metals which can react with HCl to form Lewis acids (e.g., Fe0), a strong accelerating effect was observed. The uncatalyzed reaction shows a large rate increase with increasing polarity of the solvent, suggesting that in nitrobenzene the decomposition is mainly heterolytic in nature.  相似文献   

17.
A series of ferroelectric poly(vinylidene fluoride-chlorotrifluoroethylene-trifluoroethylene)s, P(VDF-CTFE-TrFE), with systematically varied chemical compositions have been synthesized via a two-step approach consisting of copolymerization and dechlorination. The effect of polymer structure on polarization responses and dielectric properties has been investigated over a broad frequency and temperature range. As shown in the X-ray diffraction patterns, multiple phases coexist within the terpolymers as a result of the gauche conformation induced by the CTFE unit. The polarization hysteresis loops reveal the variation of remanent polarization and coercive electric field with the CTFE content due to the changes of crystallinity and crystalline phase. The observed broad dielectric constant peak with Vogel-Fulcher dielectric dispersion behavior suggests a transformation from a normal ferroelectric to a ferroelectric relaxor of the polymers. The relationship between the local relaxation process and relaxor ferroelectric behavior has been examined on the basis of the dielectric and mechanical loss tangents as a function of temperature.  相似文献   

18.
Direct deposition of high quality ferroelectric PVDF thin films using a modulated temperature spin coating method is demonstrated. The method is qualitatively guided from Flory‐Huggins theory of polymeric solutions and is general in applicability. Ferroelectric PVDF films with similar high structural and dielectric quality are deposited in environments ranging from 20 to 80% relative humidity on polar and non‐polar surfaces. The films do not show the presence of the non‐ferroelectric α‐phase. Resultant films have rms roughness values lower than 16 nm and remnant polarizations up to 6.5 µC cm?2. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 221–227  相似文献   

19.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A blend consisting of equal proportions of poly (vinylidene fluoride) and poly (methyl methacrylate) has been prepared and drawn to draw ratios up to 7. The mechanical properties and the structure and morphology of the samples have been measured, the latter using differential scanning calorimetry, optical microscopy, and various x-ray techniques. A structural model is proposed for the drawn materials which accounts for the mechanical properties and for the response of the crystalline regions of the material to an applied stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号