首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a highly robust second order accurate scheme for the Euler equations and the ideal MHD equations. The scheme is of predictor–corrector type, with a MUSCL scheme following as a special case. The crucial ingredients are an entropy stable approximate Riemann solver and a new spatial reconstruction that ensures positivity of mass density and pressure. For multidimensional MHD, a new discrete form of the Powell source terms is vital to ensure the stability properties. The numerical examples show that the scheme has superior stability compared to standard schemes, while maintaining accuracy. In particular, the method can handle very low values of pressure (i.e. low plasma ββ or high Mach numbers) and low mass densities.  相似文献   

2.
It is shown that expansion waves for the compressible Navier-Stokes equations are nonlinearly stable. The expansion waves are constructed for the compressible Euler equations based on the inviscid Burgers equation. Our result shows that Navier-Stokes equations and Euler equations are time-asymptotically equivalent on the level of expansion waves. The result is proved using the energy method, making essential use of the expansion of the underlining nonlinear waves and the specific form of the constitutive eqution for a polytropic gas.Supported in part by NSF Grant DMS-87-03971 and Army Grant DAAL03-87-K-0063Supported in part by Army Grant DAAL03-87-K-0063  相似文献   

3.
It is shown that for most, but not all, three-dimensional magnetohydrodynamic (MHD) equilibria the second variation of the energy is indefinite. Thus the class of such equilibria whose stability might be determined by the so-called Arnold criterion is very restricted. The converse question, namely conditions under which MHD equilibria will be unstable is considered in this paper. The following sufficient condition for linear instability in the Eulerian representation is presented: The maximal real part of the spectrum of the MHD equations linearized about an equilibrium state is bounded from below by the growth rate of an operator defined by a system of local partial differential equations (PDE). This instability criterion is applied to the case of axisymmetric toroidal equilibria. Sufficient conditions for instability, stronger than those previously known, are obtained for rotating MHD. (c) 1995 American Institute of Physics.  相似文献   

4.
This work describes a novel scheme for the equations of magnetohydrodynamics on orthogonal–curvilinear grids within a finite-volume framework. The scheme is based on a combination of central-upwind techniques for hyperbolic conservation laws and projection–evolution methods originally developed for Hamilton–Jacobi equations. The scheme is derived in semi-discrete form, and a full-fledged version is obtained by applying any stable and accurate solver for integration in time. The divergence-free condition of the magnetic field is a built-in property of the scheme by virtue of a constrained-transport ansatz for the induction equation. From the general formulation second-order accurate schemes for cylindrical grids and spherical grids are introduced in some more detail pointing out their potential importance in many applications. Special emphasis in this context is put to a treatment of the geometric axis implying severe complications because of the presence of coordinate singularities and associated grid degeneracy. An attempt to tackle these problems is presented. Numerical experiments illustrate the overall robustness and performance of the scheme for a small suite of tests.  相似文献   

5.
A robust, implicit, low-dissipation method suitable for LES/DNS of compressible turbulent flows is discussed. The scheme is designed such that the discrete flux of kinetic energy and its rate of change are consistent with those predicted by the momentum and continuity equations. The resulting spatial fluxes are similar to those derived using the so-called skew-symmetric formulation of the convective terms. Enforcing consistency for the time derivative results in a novel density weighted Crank–Nicolson type scheme. The method is stable without the addition of any explicit dissipation terms at very high Reynolds numbers for flows without shocks. Shock capturing is achieved by switching on a dissipative flux term which tends to zero in smooth regions of the flow. Numerical examples include a one-dimensional shock tube problem, the Taylor–Green problem, simulations of isotropic turbulence, hypersonic flow over a double-cone geometry, and compressible turbulent channel flow.  相似文献   

6.
The paper presents an investigation of the accuracy and efficiency of artificial compressibility, characteristics-based (CB) schemes for variable-density incompressible flows. The CB schemes have been implemented in conjunction with a multigrid method for accelerating numerical convergence and a fourth-order, explicit Runge–Kutta method for the integration of the governing equations in time. The implementation of the CB schemes is obtained in conjunction with first-, second- and third-order interpolation formulas for calculating the variables at the cell faces of the computational volume. The accuracy and efficiency of the schemes are examined against analytical and experimental results for diffusion broadening in two- and three-dimensional microfluidic channels, a problem that has motivated the development of the present methods. Moreover, unsteady, inviscid simulations have been performed for variable-density mixing layer. The computations revealed that accuracy and efficiency depend on the CB scheme design. The best multigrid convergence rates were exhibited by the conservative CB scheme, which is obtained by the fully conservative formulation of the variable-density, incompressible equations.  相似文献   

7.
We present a finite-volume scheme for compressible Euler flows where the grid is cartesian and it does not fit to the body. The scheme, based on the definition of an ad hoc Riemann problem at solid boundaries, is simple to implement and it is formally second order accurate. Error convergence rates with respect to several exact test cases are investigated and examples of flow solutions in one, two and three dimensions are presented.  相似文献   

8.
A high-order accurate hybrid central-WENO scheme is proposed. The fifth order WENO scheme [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] is divided into two parts, a central flux part and a numerical dissipation part, and is coupled with a central flux scheme. Two sub-schemes, the WENO scheme and the central flux scheme, are hybridized by means of a weighting function that indicates the local smoothness of the flowfields. The derived hybrid central-WENO scheme is written as a combination of the central flux scheme and the numerical dissipation of the fifth order WENO scheme, which is controlled adaptively by a weighting function. The structure of the proposed hybrid central-WENO scheme is similar to that of the YSD-type filter scheme [H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238]. Therefore, the proposed hybrid scheme has also certain merits that the YSD-type filter scheme has. The accuracy and efficiency of the developed hybrid central-WENO scheme are investigated through numerical experiments on inviscid and viscous problems. Numerical results show that the proposed hybrid central-WENO scheme can resolve flow features extremely well.  相似文献   

9.
We propose a discretization method of a five-equation model with isobaric closure for the simulation of interfaces between compressible fluids. This numerical solver is a Lagrange–Remap scheme that aims at controlling the numerical diffusion of the interface between both fluids. This method does not involve any interface reconstruction procedure. The solver is equipped with built-in stability and consistency properties and is conservative with respect to mass, momentum, total energy and partial masses. This numerical scheme works with a very broad range of equations of state, including tabulated laws. Properties that ensure a good treatment of the Riemann invariants across the interface are proven. As a consequence, the numerical method does not create spurious pressure oscillations at the interface. We show one-dimensional and two-dimensional classic numerical tests. The results are compared with the approximate solutions obtained with the classic upwind Lagrange–Remap approach, and with experimental and previously published results of a reference test case.  相似文献   

10.
In this paper a hybrid numerical method using a Godunov type scheme is proposed to solve the Green–Naghdi model describing dispersive “shallow water” waves. The corresponding equations are rewritten in terms of new variables adapted for numerical studies. In particular, the numerical scheme preserves the dynamics of solitary waves. Some numerical results are shown and compared to exact and/or experimental ones in different and significant configurations. A dam-break problem and an impact problem where a liquid cylinder is falling to a rigid wall are solved numerically. This last configuration is also compared with experiments leading to a good qualitative agreement.  相似文献   

11.
Smoothed particle dynamics refers to Smoothed Particle Hydrodynamics (SPH) when simulating macroscopic flows and to Smoothed Dissipative Particle Dynamics (SDPD) when simulating mesoscopic flows. When the considered flow is highly dissipative, this otherwise very attractive method faces a serious time-step limitation. This difficulty, known in literature as Schmidt number problem for Dissipative Particle Dynamics (DPD), prevents the application of SDPD for important cases of liquid micro-flows. In this paper we propose a splitting scheme which allows to increase significantly the admissible time-step size for SPH and SDPD. Macroscopic and mesoscopic validation cases, and numerical simulations of polymer in shear flows suggest that this scheme is stable and accurate, and therefore efficient simulations at Schmidt numbers of order O(106) are possible.  相似文献   

12.
In the present work, we numerically explore the existence and stability properties of different types of configurations of dark-bright solitons, dark-bright soliton pairs and pairs of dark-bright and dark solitons in discrete settings, starting from the anti-continuum limit. We find that while single discrete dark-bright solitons have similar stability properties to discrete dark solitons, their pairs may only be stable if the bright components are in phase and are always unstable if the bright components are out of phase. Pairs of dark-bright solitons with dark ones have similar stability properties as individual dark or dark-bright ones. Lastly, we consider collisions between dark-bright solitons and between a dark-bright one and a dark one. Especially in the latter and in the regime where the underlying lattice structure matters, we find a wide range of potential dynamical outcomes depending on the initial soliton speed.  相似文献   

13.
The goal of this paper is to present high-order cell-centered schemes for solving the equations of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretization of the numerical fluxes is obtained through the computation of the time rate of change of the cell volume. It allows to derive finite volume numerical schemes that are compatible with the geometric conservation law (GCL). Two discretizations of the momentum equations are proposed depending on the form of the discrete gradient operator. The first one corresponds to the control volume scheme while the second one corresponds to the so-called area-weighted scheme. Both formulations share the same discretization for the total energy equation. In both schemes, fluxes are computed using the same nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The control volume scheme is conservative for momentum, total energy and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does not preserve spherical symmetry. On the other hand, the area-weighted scheme is conservative for total energy and preserves spherical symmetry for one-dimensional spherical flow on equi-angular polar grid. The two-dimensional high-order extensions of these two schemes are constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess these new schemes. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new schemes.  相似文献   

14.
A new multi-block hybrid compact–WENO finite-difference method for the massively parallel computation of compressible flows is presented. In contrast to earlier methods, our approach breaks the global dependence of compact methods by using explicit finite-difference methods at block interfaces and is fully conservative. The resulting method is fifth- and sixth-order accurate for the convective and diffusive fluxes, respectively. The impact of the explicit interface treatment on the stability and accuracy of the multi-block method is quantified for the advection and diffusion equations. Numerical errors increase slightly as the number of blocks is increased. It is also found that the maximum allowable time steps increase with the number of blocks. The method demonstrates excellent scalability on up to 1264 processors.  相似文献   

15.
A new formulation of Kapila’s five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow is derived, together with an appropriate numerical method. The new formulation uses flow equations based on conservation laws and exchange laws only. The two fluids exchange momentum and energy, for which exchange terms are derived from physical laws. All equations are written as a single system of equations in integral form. No equation is used to describe the topology of the two-fluid flow. Relations for the Riemann invariants of the governing equations are derived, and used in the construction of an Osher-type approximate Riemann solver. A consistent finite-volume discretization of the exchange terms is proposed. The exchange terms have distinct contributions in the cell interior and at the cell faces. For the exchange-term evaluation at the cell faces, the same Riemann solver as used for the flux evaluation is exploited. Numerical results are presented for two-fluid shock-tube and shock-bubble-interaction problems, the former also for a two-fluid mixture case. All results show good resemblance with reference results.  相似文献   

16.
We present a high-order cell-centered Lagrangian scheme for solving the two-dimensional gas dynamics equations on unstructured meshes. A node-based discretization of the numerical fluxes for the physical conservation laws allows to derive a scheme that is compatible with the geometric conservation law (GCL). Fluxes are computed using a nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The first-order scheme is conservative for momentum and total energy, and satisfies a local entropy inequality in its semi-discrete form. The two-dimensional high-order extension is constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess this new scheme. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new scheme.  相似文献   

17.
We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO) reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.  相似文献   

18.
We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO) reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.  相似文献   

19.
Harmonic generation from non-cumulative fundamental symmetric (S0S0) and antisymmetric (A0A0) modes in plate is studied from a numerical standpoint. The contribution to harmonic generation from material nonlinearity is shown to be larger than that from geometric nonlinearity. Also, increasing the magnitude of the higher order elastic constants increases the amplitude of second harmonics. Second harmonic generation from non-phase-matched modes illustrates that group velocity matching is not a necessary condition for harmonic generation. Additionally, harmonic generation from primary mode is continuous and once generated, higher harmonics propagate independently. Lastly, the phenomenon of mode-interaction to generate sum and difference frequencies is demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号