首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading and constraint conditions. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previous developments applied so far on isotropic homogeneous and isotropic interface cracks. The spatial variation of FGM material properties is taken into account at the level of element integration points. To validate the developed method, two- and three-dimensional mixed-mode fracture problems are selected from the literature for comparison. Two-dimensional cases include: inclined central crack in a large FGM medium under uniform tensile strain and stress loadings, a slanted crack in a finite-size FGM plate under exponentially varying tensile stress loading and an edge crack in a finite-size plate under shear traction load. The three-dimensional example models a deflected surface crack in a finite-size FGM plate under uniform tensile stress loading. Comparisons between current results and those from analytical and other numerical methods yield good agreement. Thus, it is concluded that the developed three-dimensional enriched finite elements are capable of accurately computing mixed-mode fracture parameters for cracks in FGMs.  相似文献   

2.
In this study, a method and corresponding tools are presented to insert a three-dimensional crack of a given size and location into a finite element model without any cracks using fully unstructured finite elements. For research purposes, publicly available two and three-dimensional meshing software, Triangle© and Tetgen©, are utilized and integrated with an in-house developed program to compatibly select and re-mesh the three-dimensional crack region of the original input model. Within the procedure, the boundary conditions and loads existing on the original model are also book kept and transferred to the new model containing the crack. Next, the new finite element model, which now contains the crack geometry, the loads and boundary conditions, is solved in a general-purpose finite element program employing enriched elements. The above procedure is demonstrated on a series of surface crack problems in finite-thickness plates including mixed-mode fracture conditions. The obtained results are compared to well-known solutions available in the literature. These comparisons showed good agreement for all cases analyzed. It is, therefore, concluded that the procedure developed is valid, efficient and yields accurate three-dimensional fracture solutions.  相似文献   

3.
An adaptive strategy for the finite element solution of three-dimensional viscous flow problems is defined and implemented. The solution strategy is based on an advancing front mesh generator making use of binary data structures for fast geometrical data handling. The error is estimated a posteriori with a residual-type bound. The error estimate is shown to exhibit proper convergence for tetrahedral elements. Its combination with the mesh generator and an interpolation scheme for unstructured meshes is shown to generate adaptive meshes and to reduce the solution cost for a given error level, as illustrated by the isothermal flow of a shear-thinning fluid.  相似文献   

4.
提出了一种适用于黏弹性界面裂纹问题的增量“加料” 有限元方法. 利用弹性界面裂纹尖端位移场的解答,通过对应原理和拉普拉斯逆变换近似方法,得到了黏弹性界面裂纹的尖端位移场. 用该位移场构造了黏弹性界面裂纹“加料” 单元和过渡单元位移模式,推导了增量“加料” 有限元方程,求解有限元方程可获得应力强度因子和应变能释放率等断裂参量. 建立了典型黏弹性界面裂纹平面问题“加料” 有限元模型,计算结果表明,对于弹性/黏弹性界面裂纹和黏弹性/黏弹性界面裂纹,该方法都能得到相当精确地断裂参量,并能很好地反映蠕变和松弛特性,可推广应用于黏弹性界面断裂问题的计算分析.   相似文献   

5.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   

6.
一种XFEM断裂分析的裂尖单元新型改进函数   总被引:4,自引:2,他引:4  
江守燕  杜成斌 《力学学报》2013,45(1):134-138
提出了一种适用于裂尖改进单元的新型改进函数, 基于三角变换的方法, 保留裂纹尖端场的应力奇异性和裂纹上、下表面的位移不连续性, 将常规扩展有限元法裂尖改进单元的4 项改进函数缩减为2 项, 裂尖改进单元的结点由常规的8 个改进自由度减少为4 个. 采用2 个正交的水平集函数表征材料内部裂纹面, 详细阐述了改进单元类型的判别方法, 给出一种改进单元的分区域积分方案. 最后, 若干断裂力学问题经典算例的数值计算结果表明:建议的裂尖改进函数具有较高的数值精度, 该方法是十分有效的.  相似文献   

7.
A high resolution finite element method for the solution of problems involving high speed compressible flows is presented. The method uses the concepts of flux-corrected transport and is presented in a form which is suitable for implementation on completely unstructured triangular or tetrahedral meshes. Transient and steady-state examples are solved to illustrate the performance of the algorithm.  相似文献   

8.
杜效鹄  段云岭 《力学进展》2006,36(2):247-264
综述了模拟准脆性材料开裂过程的数值计算方法的研究进展和工程应用,比较了表征强不连续问题的显式非连续模型和隐式非连续模型的优缺点.结合混凝土粘结裂纹, 重点讨论了嵌入非连续模型,扩展有限元方法和富集有限元技术等非连续方法的构造特征和本质区别.从各种富集方法的理论完备性考察,以假定发展应变为基础的嵌入非连续方法虽然可以解决混凝土开裂过程中的应力锁死,满足内部边界的静力平衡条件以及反映开裂后的位移不连续问题,但嵌入非连续所采用的富集函数在开裂单元中并不能满足协调条件,使非连续两侧的应变不独立. 其局限性是由于富集自由度在单元的水平上引入,而以单位分解为基础的扩展有限元和富集有限元的富集函数以节点自由度的方式引入,除具有嵌入非连续的优点, 还可以有效消除嵌入非连续引起裂纹两侧应变的相互影响.文中同时指出了网格重构技术,弥散裂纹模型的局限性以及扩展有限元和富集有限元技术在构造方式上的细微差别.对于节点自由度方式引入的富集函数, 其操作困难性在文中也作了说明.   相似文献   

9.
Abrupt changes in boundary conditions in viscous flow problems give rise to stress singularities. Ordinary finite element methods account effectively for the global solution but perform poorly near the singularity. In this paper we develop singular finite elements, similar in principle to the crack tip elements used in fracture mechanics, to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of convergence. These special elements surround the singular point, and the corresponding field shape functions embody the form of the singularity. Because the pressure is singular, there is no pressure node at the singular point. The method performs well when applied to the stick–slip problem and gives more accurate results than those from refined ordinary finite element meshes.  相似文献   

10.
Employing simplex space-time meshes enlarges the scope of compressible flow simulations. The simultaneous discretization of space and time with simplex elements extends the flexibility of unstructured meshes from space to time. In this work, we adapt a finite element formulation for compressible flows to simplex space-time meshes. The method obtained allows, for example, flow simulation on spatial domains that change topology with time. We demonstrate this with the two-dimensional simulation of compressible flow in a valve that fully closes and opens again. Furthermore, simplex space-time meshes facilitate local temporal refinement. A three-dimensional transient simulation of blow-by past piston rings is run in parallel on 120 cores. The timings point out savings of computation time gained from local temporal refinement in four-dimensional space-time meshes.  相似文献   

11.
A new approach for the analysis of crack propagation in brittle materials is proposed, which is based on a combination of fracture mechanics and continuum damage mechanics within the context of the finite element method. The approach combines the accuracy of singular crack-tip elements from fracture mechanics theories with the flexibility of crack representation by softening zones in damage mechanics formulations. A super element is constructed in which the typical elements are joined together. The crack propagation is decided on either of two fracture criteria; one criterion is based on the energy release rate or the J-integral, the other on the largest principal stress in the crack-tip region. Contrary to many damage mechanics methods, the combined fracture⧹damage approach is not sensitive to variations in the finite element division. Applications to situations of mixed-mode crack propagation in both two- and three-dimensional problems reveal that the calculated crack paths are independent of the element size and the element orientation and are accurate within one element from the theoretical (curvilinear) crack paths.  相似文献   

12.
邓小毛  廖子菊 《力学学报》2022,54(12):3513-3523
三维流固耦合问题的非结构网格数值算法在很多工程领域都有重要应用,目前现有的数值方法主要基于分区算法,即流体和固体区域分别进行求解,因此存在收敛速度较慢以及附加质量导致的稳定性问题,此外,该类算法的并行可扩展性不高,在大规模应用计算方面也受到一定限制.本文针对三维非定常流固耦合问题,提出一种基于区域分解的全隐全耦合可扩展并行算法.首先基于任意拉格朗日-欧拉框架建立流固耦合控制方程,然后时间方向采用二阶向后差分隐式格式、空间方向采用非结构稳定化有限元方法进行离散.对于大规模非线性离散系统,构造一种结合非精确Newton法、Krylov子空间迭代法与区域分解Schwarz预条件子的Newton-Krylov-Schwarz (NKS)并行求解算法,实现流体、固体和动网格方程的一次性整体求解.采用弹性障碍物绕流的标准测试算例对数值方法的准确性进行了验证,数值性能测试结果显示本文构造的全隐全耦合算法具有良好的稳定性,在不同的物理参数下具有良好的鲁棒性,在“天河二号”超级计算机上,当并行规模从192增加到3072个处理器核时获得了91%的并行效率.性能测试结果表明本文构造的NKS算法有望应用于复杂...  相似文献   

13.
Control volume finite element methods (CVFEMs) have been proposed to simulate flow in heterogeneous porous media because they are better able to capture complex geometries using unstructured meshes. However, producing good quality meshes in such models is nontrivial and may sometimes be impossible, especially when all or parts of the domains have very large aspect ratio. A novel CVFEM is proposed here that uses a control volume representation for pressure and yields significant improvements in the quality of the pressure matrix. The method is initially evaluated and then applied to a series of test cases using unstructured (triangular/tetrahedral) meshes, and numerical results are in good agreement with semianalytically obtained solutions. The convergence of the pressure matrix is then studied using complex, heterogeneous example problems. The results demonstrate that the new formulation yields a pressure matrix than can be solved efficiently even on highly distorted, tetrahedral meshes in models of heterogeneous porous media with large permeability contrasts. The new approach allows effective application of CVFEM in such models.  相似文献   

14.
A method of efficiently computing turbulent compressible flow over complex two-dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and compared with experimental data.  相似文献   

15.
Two different types of 8-node cracked quadrilateral finite element are presented for fracture applications. The first element contains a central crack and the other one includes an edge crack. The introduced elements are applicable in 2D problems. The crack is not physically modeled within the element, but instead, its effects on the stiffness matrix are taken into account by utilizing linear fracture mechanics laws. Furthermore, a simple and practical procedure is proposed for calculation of stress intensity factor (SIF) by employing proposed cracked elements. Several numerical examples are presented to evaluate the capabilities of the proposed elements and procedure.  相似文献   

16.
In this paper interfacial edge crack problems are considered by the application of the finite element method. The stress intensity factors are accurately determined from the ratio of crack-tip-stress value between the target given unknown and reference problems. The reference problem is chosen to produce the singular stress fields proportional to those of the given unknown problem. Here the original proportional method is improved through utilizing very refined meshes and post-processing technique of linear extrapolation. The results for a double-edge interface crack in a bonded strip are newly obtained and compared with those of a single-edge interface crack for different forms of combination of material. It is found that the stress intensity factors should be compared in the three different zones of relative crack lengths. Different from the case of a cracked homogeneous strip, the results for the double edge interface cracks are found to possibly be bigger than those for a single edge interface crack under the same relative crack length.  相似文献   

17.
断裂过程的有限元模拟   总被引:40,自引:0,他引:40  
讨论了材料断裂过程的有限元模拟技术。基于自适应有限元的一般原理,并针对多相材料的裂纹扩展的特点,提出了一种简化的高精度和高效率有限元网格的动态重新划分策略。裂纹被假设沿着单元之间的路径连续扩展,利用节点力释放技术生成新的裂纹自由表面,发展了一种可随裂尖连续移动的网格动态加密和释放方法。这种方法已在各种裂纹问题中得以实现与应用。  相似文献   

18.
孙立国  江守燕  杜成斌 《力学学报》2022,54(10):2825-2834
为提高数值计算的精度,断裂力学问题的数值模拟需要在裂纹扩展的局部区域采用较密的网格,而远离裂纹扩展的区域可采用较疏的网格,且对于裂纹扩展问题的数值模拟,大多数数值方法又存在局部网格重剖分的问题.论文提出了一种基于图像四叉树的改进型比例边界有限元法用于模拟裂纹扩展问题,该方法可根据结构域几何外边界的图像全自动进行四叉树网格剖分,无需任何人工干预,网格剖分效率极高,由于比例边界有限元法本身的优势,四叉树网格的悬挂节点可以直接地视为新的节点,无需任何特殊处理.通过引入虚节点的思想,将裂纹与四叉树单元边界交叉点作为虚节点,虚节点的自由度作为附加自由度处理,并采用水平集函数表征材料内部的裂纹面,含不连续裂纹面的子域可通过节点水平集函数识别,使得裂纹扩展时无需进行网格重剖分,界面的几何特征通过比例边界有限元子域的附加自由度表征.最后,通过若干算例验证了该方法的性能,建议的改进型比例边界有限元法在求解复合型应力强度因子和模拟材料内部裂纹扩展路径时均具有较高的精度.  相似文献   

19.
Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based gradient indicator is used to track discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly with the size of the problem.  相似文献   

20.
混凝土断裂的连续-非连续方法   总被引:1,自引:0,他引:1  
采用有限元形函数作为单位分解函数,位移间断用富集节点的附加自由度表示,建立了允许在单元内部位移非连续的局部富集公式以表征混凝土的开裂区域.富集基函数由节点形函数和节点形函数与间断函数的乘积的并集构成.非连续位移的扩展路径完全与网格结构无关.不同于以非协调应变为基础的嵌入非连续模型,对单元的类型没有限制而且间断位移可以贯穿单元边界.局部富集思想与扩展有限元类似,但富集点自由度保持节点位移的物理意义不变,使相邻单元无需进行富集运算.在变分公式中引入混凝土粘结本构定律,推导了考虑断裂过程区非线性影响的基本方程.对混凝土粘结裂纹扩展的数值模拟说明了该计算方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号