首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a high-order hybrid boundary-finite elements method well-suited for solving time-harmonic electromagnetic scattering problems. Actually, this method is specially devoted to perfect electric conductors coated with a thin layer material. On such class of problems this method is shown to be fast and accurate. The fast feature is due to the joint use of finite elements of anisotropic order fitting the layer thickness, and of a point-based boundary element method on the skin. The accuracy is ensured, first by a discretization scheme satisfying the HcurlHdiv conformity required by the integro-differential equation and, secondly, by an adaptive technique of integration based on the detection of some local potential trouble on the geometry such as sharp edges or high dilatation of the elements. This algorithm does not need further information from the user and does not deteriorate the computation time. Numerical examples confirm the efficiency of this approach.  相似文献   

2.
We present two hybridizable discontinuous Galerkin (HDG) methods for the numerical solution of the time-harmonic Maxwell’s equations. The first HDG method explicitly enforces the divergence-free condition and thus necessitates the introduction of a Lagrange multiplier. It produces a linear system for the degrees of freedom of the approximate traces of both the tangential component of the vector field and the Lagrange multiplier. The second HDG method does not explicitly enforce the divergence-free condition and thus results in a linear system for the degrees of freedom of the approximate trace of the tangential component of the vector field only. For both HDG methods, the approximate vector field converges with the optimal order of k + 1 in the L2-norm, when polynomials of degree k are used to represent all the approximate variables. We propose elementwise postprocessing to obtain a new Hcurl-conforming approximate vector field which converges with order k + 1 in the Hcurl-norm. We present extensive numerical examples to demonstrate and compare the performance of the HDG methods.  相似文献   

3.
In this paper, we propose and analyze a method derived from a Nitsche approach for handling boundary conditions in the Maxwell equations. Several years ago, the Nitsche method was introduced to impose weakly essential boundary conditions in the scalar Laplace operator. Then, it has been worked out more generally and transferred to continuity conditions. We propose here an extension to vector div–curl problems. This allows us to solve the Maxwell equations, particularly in domains with reentrant corners, where the solution can be singular. We formulate the method for both the electric and magnetic fields and report some numerical experiments.  相似文献   

4.
We develop a new type of derivative matrix for pseudospectral methods. The norm of these matrices grows at the optimal rate O(N2) for N-by-N matrices, in contrast to standard pseudospectral constructions that result in O(N4) growth of the norm. The smaller norm has a big advantage when using the derivative matrix for solving time dependent problems such as wave propagation. The construction is based on representing the derivative operator as an integral kernel, and does not rely on the interpolating polynomials. In particular, we construct second derivative matrices that incorporate Dirichlet or Neumann boundary conditions on an interval and on the disk, but the method can be used to construct a wide variety of commonly used operators for solving PDEs and integral equations. The construction can be used with any quadrature, including traditional Gauss–Legendre quadratures, but we have found that by using quadratures based on prolate spheroidal wave functions, we can achieve a near optimal sampling rate close to two points per wavelength, even for non-periodic problems. We provide numerical results for the new construction and demonstrate that the construction achieves similar or better accuracy than traditional pseudospectral derivative matrices, while resulting in a norm that is orders of magnitude smaller than the standard construction. To demonstrate the advantage of the new construction, we apply the method for solving the wave equation in constant and discontinuous media and for solving PDEs on the unit disk. We also present two compression algorithms for applying the derivative matrices in O(N log N) operations.  相似文献   

5.
《Physica B: Condensed Matter》2000,275(1-3):207-211
We study hysteretic phenomena in random ferromagnets. We argue that the angle-dependent magnetostatic (dipolar) terms introduce frustration and long-range interactions in these systems. This makes it plausible that the Sherrington–Kirkpatrick model may be able to capture some of the relevant physics of these systems. We use scaling arguments, replica calculations and large scale numerical simulations to characterize the hysteresis of the zero temperature SK model. By constructing the distribution functions of the avalanche sizes, magnetization jumps and local fields, we conclude that the system exhibits self-organized criticality everywhere on the hysteresis loop.  相似文献   

6.
《Nuclear Physics B》2003,662(3):461-475
New algebraic approach to analytical calculations of D-dimensional integrals for multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of multi-loop Feynman integrals, such as integration by parts and star-triangle relation methods, can be drastically simplified by using this algebraic approach. To demonstrate the advantages of the algebraic method of analytical evaluation of multi-loop Feynman diagrams, we calculate ladder diagrams for the massless φ3 theory. Using our algebraic approach we show that the problem of evaluation of special classes of Feynman diagrams reduces to the calculation of the Green functions for specific quantum mechanical problems. In particular, the integrals for ladder massless diagrams in the φ3 scalar field theory are given by the Green function for the conformal quantum mechanics.  相似文献   

7.
We investigate the use of renormalization group methods to solve partial differential equations (PDEs) numerically. Our approach focuses on coarse-graining the underlying continuum process as opposed to the conventional numerical analysis method of sampling it. We calculate exactly the coarse grained or “perfect” Laplacian operator and investigate the numerical effectiveness of the technique on a series of 1 + 1-dimensional PDEs with varying levels of smoothness in the dynamics: the diffusion equation, the time-dependent Ginzburg–Landau equation, the Swift–Hohenberg equation, and the damped Kuramoto–Sivashinsky equation. We find that the renormalization group is superior to conventional sampling-based discretizations in representing faithfully the dynamics with a large grid spacing, introducing no detectable lattice artifacts as long as there is a natural ultraviolet cutoff in the problem. We discuss limitations and open problems of this approach.  相似文献   

8.
We discuss the magnetostatic energy of checkerboard domain structures in ultrathin magnetic films (of a few monolayer thickness) and in an atomic monolayer using simple magnetostatic considerations where the easy direction of magnetization is perpendicular to the film. The checkerboard domain size, D, the domain-wall width, ω, the ratio f of the uniaxial surface anisotropy, Ks, to the dipolar energy and the binding energy, (BE), have been calculated numerically with the variational parameter δ and the number of atomic layers, nl, as parameters.  相似文献   

9.
A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N4/3 for N computational cells used and with N2/3 (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples.  相似文献   

10.
Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier–Stokes equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance, therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a h-multigrid method using explicit Runge–Kutta relaxation. Two-level Fourier analysis of this method for the scalar advection–diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D compressible Navier–Stokes equations where numerical experiments show that the computational effort is significantly reduced, up to a factor 10 w.r.t. single-grid iterations.  相似文献   

11.
We transform the quartic Hubbard terms in the extended Hubbard model to a quadratic form by making the Hubbard–Stratonovich transformation for the electron operators. This transformation allows us to derive exact results for mass operator and charge–charge and spin–spin correlation functions for s-wave superconductivity. We discuss the application of the method to the d-wave superconductivity.  相似文献   

12.
《Physics Reports》2001,347(5):373-459
The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose–Einstein condensates.  相似文献   

13.
14.
《Nuclear Physics B》2001,600(3):512-530
The semi-classical limit of the algebraic Bethe ansatz method is used to solve the theory of Gaudin models. Via off-shell Bethe ansatz method we find the spectra and eigenvectors of the N−1 independents Gaudin Hamiltonians with symmetry osp(2∣1). We also show how the off-shell Gaudin equation solves the trigonometric Knizhnik–Zamolodchikov equation.  相似文献   

15.
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.  相似文献   

16.
We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements.  相似文献   

17.
《Nuclear Physics B》2001,618(3):650-674
A strongly correlated electron system associated with the quantum superalgebra Uq[osp(2|2)] is studied in the framework of the quantum inverse scattering method. By solving the graded reflection equation, two classes of boundary-reflection K-matrices leading to four kinds of possible boundary interaction terms are found. Performing the algebraic Bethe ansatz, we diagonalize the two-level transfer matrices which characterize the charge and the spin degrees of freedom, respectively. The Bethe-ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum are presented explicitly. We also construct two impurities coupled to the boundaries. In the thermodynamic limit, the ground state properties and impurity effects are discussed.  相似文献   

18.
《Nuclear Physics B》1998,522(3):413-470
This work is concerned with various aspects of the formulation of the quantum inverse scattering method for the one-dimensional Hubbard model. We first establish the essential tools to solve the eigenvalue problem for the transfer matrix of the classical “covering” Hubbard model within the algebraic Bethe ansatz framework. The fundamental commutation rules exhibit a hidden 6-vertex symmetry which plays a crucial role in the whole algebraic construction. Next we apply this formalism to study the SU(2) highest weights properties of the eigenvectors and the solution of a related coupled spin model with twisted boundary conditions. The machinery developed in this paper is applicable to many other models, and as an example we present the algebraic solution of the Bariev XY coupled model.  相似文献   

19.
In this article, we present a simple direct matrix method for analytically computing the Jacobian of nonlinear algebraic equations that arise from the discretization of nonlinear integro-differential equations. The method is based on a formulation of the discretized equations in vector form using only matrix-vector products and component-wise operations. By applying simple matrix-based differentiation rules, the matrix form of the analytical Jacobian can be calculated with little more difficulty than required to compute derivatives in single-variable calculus. After describing the direct matrix method, we present numerical experiments demonstrating the computational performance of the method, discuss its connection to the Newton–Kantorovich method and apply it to illustrative 1D and 2D example problems from electrochemical transport.  相似文献   

20.
We describe a semi-analytical numerical method for coherent isotropic scattering time-dependent radiative transfer problems in slab geometry. This numerical method is based on a combination of two classes of numerical methods: the spectral methods and the Laplace transform (LTSN) methods applied to the radiative transfer equation in the discrete ordinates (SN) formulation. The basic idea is to use the essence of the spectral methods and expand the intensity of radiation in a truncated series of Laguerre polynomials in the time variable and then solve recursively the resulting set of “time-independent” SN problems by using the LTSN method. We show some numerical experiments for a typical model problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号