首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Journal of Non》2005,351(49-51):3709-3715
Eight mole percent yttria-stabilized zirconia (8YSZ) nanocrystallites were synthesized at a relatively low temperature using ZrOCl2 · 8H2O and Y(NO3)3 · 6H2O as starting materials in an ethanol–water solution by a sol–gel process. The thermal behavior of the 8YSZ nanoparticles was investigated by differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the 8YSZ gel powders was estimated to be about 729 K by DTA analysis. When calcined from 773 to 1273 K, the crystallization of the cubic phase was observed by XRD. The crystallite size of the 8YSZ increased from 7.14 to 20.10 nm with calcining temperature increasing from 773 to 1273 K. The activation energy for growth of 8YSZ nanoparticles was found to be 7.26 kJ/mol.  相似文献   

2.
《Journal of Non》2007,353(24-25):2374-2382
Glass materials in the ZnO–Fe2O3–SiO2 system, containing zinc ferrite nanoparticles, were prepared by the sol–gel method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, AC- and DC-magnetization techniques. The gel samples, dried at 130 °C, were further heat treated in air at 500 and 800 °C. At 500 °C zinc ferrite and hematite nanoparticles, with an average size of approximately 24 nm, were precipitated in the brown and opaque 10ZnO–10Fe2O3–80SiO2 and in the ruby colored transparent 5ZnO–5Fe2O3–90SiO2 and 2.5ZnO–2.5Fe2O3–95SiO2 glass matrices. In the 5ZnO–5Fe2O3–90SiO2 sample the nanoparticles exhibited ferro or ferrimagnetic interactions combined with superparamagnetism with a blocking temperature of approximately 14 K. Heating at 800 °C seems to cause partial dissolution of the zinc ferrite and hematite particles in all the investigated compositions. Accordingly at 800 °C the 5ZnO–5Fe2O3–90SiO2 glass shows a paramagnetic behavior down to 2 K.  相似文献   

3.
The hydrothermal method was employed in order to obtain zinc oxide nanorods directly on Si/SiO2/Ti/Zn substrates forming brush-like layers. In the final stages of synthesis, the reaction vessel was naturally cooled or submitted to a quenching process. X-ray diffraction results showed that all the nanostructures grew [0 0 0 1] oriented perpendicular to the substrate. The influence of the cooling process over the morphology and dimensions of the nanorods was studied by scanning electron microscopy. High-resolution transmission electron microscopy images of the quenched samples showed that the zinc oxide (ZnO) crystal surfaces exhibit a thin-layered coating surrounding the crystal with a high degree of defects, as confirmed by Raman spectroscopy results. Photodetectors made from these samples exhibited enhanced UV photoresponses when compared to the ones based on naturally cooled nanorods.  相似文献   

4.
Polar and non-polar ZnMgO were synthesized on different crystallographic planes (C-, R- and M-planes) of sapphire (Al2O3) substrates by metal organic chemical vapor deposition, respectively. Under the same experimental condition, polar ZnMgO nanorods were obtained on C-Al2O3 substrate whereas non-polar ZnMgO thin films were obtained on R- and M-Al2O3 substrates. The surface morphology was significantly influenced by the competition of the preferable growth directions on different sapphire substrates. On C-Al2O3 substrate, ZnMgO nanorods were vertically well-aligned with typical lengths in the range 330–360 nm. On R- and M-Al2O3 substrates, however, ZnMgO thin films with flat surfaces were obtained, whose thickness were 150 and 20 nm, respectively. Under the same condition, the C-ZnMgO deposited on C-Al2O3 substrate has the maximum growth velocity (11 nm/nim), followed by A-ZnMgO deposited on R-Al2O3 substrate (5 nm/min), and the M-ZnMgO deposited on M-Al2O3 substrate has the minimum one (0.67 nm/min). The Near-Band-Edge (NBE) emission in Photoluminescence (PL) spectra shows a clear blueshift and a slight broadening compared with that of pure ZnO samples, which suggest that the Mg content has successfully incorporated into ZnO. The different energy blueshifts (67 meV and 98 meV) of the NBE emission demonstrate that A-ZnMgO deposited on R-Al2O3 substrate has higher Mg incorporation efficiency than C-ZnMgO on C-Al2O3 substrate.  相似文献   

5.
In this paper, we present a three-dimensional nanorod solar cell design. As the backbone of the nanorod device, density-controlled zinc oxide (ZnO) nanorods were synthesized by a simple aqueous solution growth technique at 80 °C on ZnO thin film pre-coated glass substrate. The as-prepared ZnO nanorods were coated by an amorphous hydrogenated silicon (a-Si:H) light absorber layer to form a nanorod solar cell. The light management, current–voltage characteristics and corresponding external quantum efficiency of the solar cells were investigated. An energy conversion efficiency of 3.9% was achieved for the nanorod solar cells with an a-Si:H absorber layer thickness of 75 nm, which is significantly higher than the 2.6% and the 3.0% obtained for cells with the same a-Si:H absorber layer thickness on planar ZnO and on textured SnO2:F counterparts, respectively. A short-circuit current density of 11.6 mA/cm2 and correspondingly, a broad external quantum efficiency profile were achieved for the nanorod device. An absorbed light fraction higher than 80% in the wavelength range of 375–675 nm was also demonstrated for the nanorod solar cells, including a peak value of ~ 90% at 520–530 nm.  相似文献   

6.
《Journal of Crystal Growth》2006,286(1):178-183
CaCO3 nanorods were synthesized via a facile solution route by polymer-controlled crystallization in the presence of polyacrylamide (PAM). The morphology, size and crystal structure were characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results suggest that the as-synthesized product was CaCO3 (aragonite) nanorods with diameter ca. 50 nm and length ca. 1 μm. Selected area electron diffraction (SAED) pattern shows the single-crystal nature of CaCO3 nanorods. The reaction time, temperature, pH and reactant concentration were systemically investigated. With the increase in the reaction time, hollow vaterite hexagonal disks can be obtained.  相似文献   

7.
《Journal of Non》2006,352(21-22):2061-2066
In this study a series of different gels (inorganic polymers) was synthesized with a single procedure, although varying the pH of the synthesis medium across a wide range of values. The chemicals used were as follows: a 0.25 M solution of K2O · SiO2 · 9H2O as the source of silica, a 0.25 M solution of Al(NO3)3 · 9H2O as the source of aluminum; and a 0.25 M solution of KOH to regulate the pH. Gel thermal stability was also determined, up to 1200 °C. The results show that at acidic pH both Si-rich and Al-rich gels are formed, which may crystallize into cristoballite and mullite, respectively, under thermal treatment. The gels synthesized at alkaline pH, in turn, remain stable at temperatures over 1200 °C. Depending on their composition, such gels may crystallize into leucite.  相似文献   

8.
Tin oxide (SnO2) nanorods were synthesized through an aqueous hexamethylenetetramine (HMTA) assisted synthesis route and their structural evolution from core–shell type faceted pyramidal assembly was investigated. Structural analysis revealed that the as-synthesized faceted SnO2 structures were made of randomly arranged nanocrystals with diameter of 2–5 nm. The shell thickness (0–80 nm) was dependent on the molar concentration of HMTA (1–10 mM) in aqueous solution. It was revealed that the self-assembly was possible only with tin (II) chloride solution as precursor and not with tin (IV) chloride solution. At longer synthesis hours, the pyramidal nanostructures were gradually disintegrated into single crystalline nanorods with diameter of about 5–10 nm and length of about 100–200 nm. The SnO2 nanorods showed high sensitivity towards acetone, but they were relatively less sensitive to methane, butane, sulfur dioxide, carbon monoxide and carbon dioxide. Possible mechanisms for the growth and sensing properties of the nanostructures were discussed.  相似文献   

9.
ZnO@mesoporous silica nanocomposite was prepared by the impregnation of a CMI-1 material in a Zn(NO3)2 solution followed by calcination under O2. Intensive characterization was carried out by N2 adsorption–desorption measurements, scanning and transmission electron microscopy. The optical properties of the ZnO@mesoporous silica nanocomposite were studied by photoluminescence spectroscopy. Quantum Size Effect was firstly demonstrated by subjecting the sample to a 254 nm excitation light, and was further confirmed by using a 680 nm excitation laser beam, which implies a two-photon absorption process. By focusing the 680 nm laser beam on different places in the sample, a very localized random laser effect, also induced by a two-photon absorption process, was detected.  相似文献   

10.
This study examined the structural properties of ZnO nanorods grown on Ti-buffer layers with different surface roughnesses of 1.5 and 4.0 nm. Vertically aligned ZnO nanorods were synthesized on Al2O3 substrates with a Ti-buffer layer by metal-organic chemical vapor deposition. X-ray diffraction revealed the ZnO nanorods grown on a smooth surface to have higher quality and better alignment in the ab-plane than those grown on the rough surface. Field-emission transmission electron microscopy (FE-TEM) measurements revealed a disordered layer at the ZnO/Ti interface. FE-TEM demonstrated that the Ti-buffer layer contained a mixture of ordered and amorphous phases. Energy dispersive spectroscopy (EDS) analysis revealed the Ti-buffer layers to be entirely oxides.  相似文献   

11.
《Journal of Non》2006,352(28-29):3035-3040
Perovskite-type LaMxFe1−xO3 (M = Ni, Co) nanoparticles were synthesized by a sol–gel method using propylene oxide as a gelation agent. The resulting nanoparticles show a narrow size distribution with particles in the 30–50 nm range. A highly homogeneous wet gel was formed during the hydrolysis and condensation of the precursor salts. This high homogeneity allows a substantial reduction of the calcination temperature and time required for the formation of the perovskite phase as compared with the solid-state and other wet solution routes, reducing drastically the aggregation of the particles during calcination.  相似文献   

12.
《Journal of Non》2006,352(38-39):4122-4127
The formation of lead–silicate coatings onto the surface of silica glass after its treatment in molten mixtures of Pb(NO3)2–KNO3 and Pb(NO3)2–Cu(NO3)2–KNO3 at 420–520 °C was investigated. The coating formation was supported by the appearance and adsorption/sedimentation of lead–oxide cations and nano-particles, from the salt melt, onto the treated glass surface. These particles, deposited onto the substrate, interacted with the structure of silica glass and formed an amorphous lead–silicate coating exhibiting a chemical composition gradient from PbO to SiO2. The admixture of Cu(NO3)2 in the abovementioned salt mixture favored higher rates of lead oxide sedimentation (co-sedimentation with copper oxide). The external potion of this coating was progressively crystallized during treatment in the molten mixture of Pb(NO3)2–Cu(NO3)2–KNO3 due to the nucleation of Cu2O crystals supporting the formation of Pb8Cu(Si2O7)3, Pb3O4 and 2PbO · SiO2.  相似文献   

13.
《Journal of Non》2006,352(28-29):3088-3094
Bulk binary ZnO–P2O5 glasses with 50–70 mol% ZnO were immersed in distilled water at 30–90 °C for up to 72 h. The immersed samples were characterized by weight loss, the change in solution pH, X-ray diffraction (XRD) analysis, scanning electron microscopy and Raman spectroscopy. Weight loss decreased with ZnO concentration for all immersion temperatures. Dissolution behavior was classified into two types in terms of weight loss and macroscopic appearance. Type I was primarily recognized in 50–60 mol% ZnO glasses. In type I, the weight loss for 72 h was relatively large (>1.0 × 10−7 kg mm−2, >10% of initial sample weight). Raman spectra of the type I glasses indicated that the depolymerization of phosphate glass network occurred during the dissolution process. Crystalline Zn2P2O7 · 3H2O was precipitated in the water solution after immersion. Type II dissolution behavior was recognized in the 65 and 70 mol% ZnO glasses except for the 65ZnO–35P2O5 glass immersed at 90 °C. In the type II behavior, the weight loss for 72 h was relatively-small (<1.0 × 10−8 kg mm−2, <1% of initial sample weight). The microstructure of the type II glass indicated selective dissolution. The dissolution process of the type II glass is discussed.  相似文献   

14.
A new, 12-fold-coordinated holmium(III) compound [Ho(NO3)3(PBH)2]NO3 · 1.5H2O has been prepared and studied with high-resolution photoacoustic spectrometry (PAS). The spectroscopic parameters of the obtained photoacoustic lines attributed to the f–f transitions were analyzed and compared with the parameters for a similar 10-fold-coordinated holmium(III) complex [Ho(NO3)2(PicBH)2]. Computer fitting of the obtained spectra allowed decomposing them into Gaussian components and calculating the spectral parameters of each transition. It was found that of the five observed f–f transitions, the 5I8  5G6 and the 5I8  5G3 transitions were found to be the most sensitive to the change of ligand coordination. The charge transfer π  π1 and n  π1 transitions registered in the UV part of the photoacoustic spectrum showed a significant variation due to the change in the coordination number and the shift of ligands toward greater wavenumbers.  相似文献   

15.
In the present paper we report the magnetic characterization of silver-iron oxide nanocomposite obtained by the chemical microemulsion method. TEM images and X-ray diffractograms show that the nanocomposite consists of Ag nanoparticles of ~ 7 nm surrounded by a quasiamorphous matrix. The ZFC–FC curves and Mössbauer spectra obtained at different temperatures show a typical evolution of a system composed of weakly interacting nanoparticles with a blocking temperature (Tb) of ~50 K. The analysis of the magnetic data reveals that the matrix is formed by γ-Fe2O3 phase with a structural range order of ~2 nm.  相似文献   

16.
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3 +-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+  Ag0) or Au ions (Au3 +  Au0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3 + ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the 4I13/2  4I15/2 Er3 + transition and Gold nanoparticles with the 2H11/2  4I13/2 (805 nm) and 4S3/2  4I13/2 (840 nm) Er3 + transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3 + ions, which is confirmed from the theoretical spectra calculated through the decay rate.  相似文献   

17.
《Journal of Non》2006,352(23-25):2539-2542
In this study, we correlated the photoluminescence (PL) with the microstructure of ZnS:Mn phosphor powders prepared by firing ZnS with MnO (1 mol%), NaCl (1 mol%) and ZnS nanocrystallites (NCs) in the range of 0–100 wt% at 600–1000 °C for 2 h in the atmosphere of 3%H2/Ar. ZnS NCs of 10–30 nm in size were produced by co-precipitation of zinc nitrate and sodium sulfide solutions at room temperature. Thermal analysis (DTA/TG) and X-ray diffraction (XRD) results indicated that the cubic-hexagonal transformation temperature of ZnS NCs was lowered to approximately 600 °C, which was much lower than that of bulk ZnS (1020 °C). PL measurements revealed that ZnS:Mn fired with 1 wt% ZnS NCs showed the optimal luminescence intensity when compared to those without or with higher ZnS NCs (>1 wt%). An appropriate amount of ZnS NCs (1 wt%) acting as the flux in the firing process was inferred to avoid the inhomogeneous distribution of Mn2+ as well as the migration of excitation energy to quenching sites and therefore to result in the enhanced PL intensity.  相似文献   

18.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation.  相似文献   

19.
《Journal of Non》2005,351(43-45):3503-3507
Lead-free glasses in the SiO2–B2O3–Bi2O3–ZnO quaternary system were studied. The glass formation region, as determined by XRD patterns of bulk samples, was limited to glasses having more than 40 mol% of the glass-forming oxides SiO2 and B2O3. Crystalline phases of Zn2SiO4 (willemite) were detected in compositions of 30SiO2 · 10B2O3 · 20Bi2O3 · 40ZnO and 20SiO2 · 10B2O3 · 25Bi2O3 · 45ZnO. Glass transition temperatures (Tg), dilatometric softening points (Td) and linear coefficients of expansion in the temperatures range of 25–300 °C (α25–300) were measured for subsystems along the B2O3 join of 10, 20 and 30 mol%. For these subsystems, Tg ranged from 411 to 522 °C, and Td ranged from 453 to 563 °C, both decreasing with increasing Bi2O3 content. The measured α25–300 ranged from 53 to 95 × 10−7 °C−1, with values increasing with increasing Bi2O3 content. The ZnO content had the opposite effect to the Bi2O3 content. It appears that Bi3+ acts as a glass-modifier in this quaternary system.  相似文献   

20.
《Journal of Crystal Growth》2007,298(2):192-196
High-yield Eu2O3 short nanorods have been prepared by a facile sol-gel method with polystyrene/polyelectrolyte (PS/PE) microreactor as template in an aqueous solution of europium nitrate in the presence of ammonia and urea. The properties of Eu2O3 nanorods were characterized by powder X-ray diffraction, thermogravimetric analysis, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, field emission scanning electron microscopy (FESEM), and photoluminescence spectroscopy. The particle sizes measured from TEM and FESEM are about 200 nm×500 nm (W×L). A possible mechanism for the formation of such high-yield oxide nanorods is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号