首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The present contribution describes the synthesis and structural characterization of structurally diverse organoaluminum species supported by variously substituted aminophenolate-type ligands: these Al complexes are all derived from the reaction of AlMe3 with aminophenols 2-CH2NH(R)-C6H3OH (1a, R = mesityl (Mes); 1b, R = 2,6-di-isopropylphenyl (Diip)) and 2-CH2NH(R)-4,6-tBu2-C6H2OH (1c, R = Mes; 1d, R = Diip). The low temperature reaction of AlMe3 with 1ab readily affords the corresponding Al dimeric species [μ-η11-N,O-{2-CH2NH(R)-C6H4O}]2Al2Me4 (2ab), consisting of twelve-membered ring aluminacycles with two μ-η11-N,O-aminophenolate units, as determined by X-ray crystallographic studies. Heating a toluene solution of 2a (80 °C, 3 h) affords the quantitative and direct formation of the dinuclear aluminium complex Al[η2-N; μ,η2-O-{2-CH2N(Mes)-C6H4O}](AlMe2) (4a) while species 2b, under the aforementioned conditions, affords the formation of the Al dimeric species [η2-N,O-{2-CH2N(Dipp)-C6H4O}AlMe]2 (3b), as deduced from X-ray crystallography for both 3b and 4a. In contrast, the reaction of bulky aminophenol pro-ligands 1cd with AlMe3 afford the corresponding monomeric Al aminophenolate chelate complexes η2-N,O-{2-CH2NH(R)-4,6-tBu2-C6H2O}AlMe2 (5cd; R = Mes, Diip; Scheme 3) as confirmed by X-ray crystallographic analysis in the case of 5d. Subsequent heating of species 5cd yields, via a methane elimination route, the corresponding Al-THF amido species η2-N,O-{2-CH2N(R)-4,6-tBu2-C6H2O}Al(Me)(THF) (6cd; R = Mes, Diip). Compounds 6c6d, which are of the type {X2}Al(R)(L) (L labile), may well be useful as novel well-defined Lewis acid species of potential use for various chemical transformations. Overall, the sterics of the aminophenol backbone and, to a lesser extent, the reaction conditions that are used for a given ligand/AlMe3 set essentially govern the rather diverse “structural” outcome in these reactions, with a preference toward the formation of mononuclear Al species (i.e. species 5cd and 6cd) as the steric demand of the chelating N,O-ligand increases.  相似文献   

2.
The present contribution describes the synthesis and structural characterization of structurally diverse organoaluminum species supported by variously substituted aminophenolate-type ligands: these Al complexes are all derived from the reaction of AlMe3 with aminophenols 2-CH2NH(R)-C6H3OH (1a, R = mesityl (Mes); 1b, R = 2,6-di-isopropylphenyl (Diip)) and 2-CH2NH(R)-4,6-tBu2-C6H2OH (1c, R = Mes; 1d, R = Diip). The low temperature reaction of AlMe3 with 1ab readily affords the corresponding Al dimeric species [μ-η11-N,O-{2-CH2NH(R)-C6H4O}]2Al2Me4 (2ab), consisting of twelve-membered ring aluminacycles with two μ-η11-N,O-aminophenolate units, as determined by X-ray crystallographic studies. Heating a toluene solution of 2a (80 °C, 3 h) affords the quantitative and direct formation of the dinuclear aluminium complex Al[η2-N; μ,η2-O-{2-CH2N(Mes)-C6H4O}](AlMe2) (4a) while species 2b, under the aforementioned conditions, affords the formation of the Al dimeric species [η2-N,O-{2-CH2N(Dipp)-C6H4O}AlMe]2 (3b), as deduced from X-ray crystallography for both 3b and 4a. In contrast, the reaction of bulky aminophenol pro-ligands 1cd with AlMe3 afford the corresponding monomeric Al aminophenolate chelate complexes η2-N,O-{2-CH2NH(R)-4,6-tBu2-C6H2O}AlMe2 (5cd; R = Mes, Diip; Scheme 3) as confirmed by X-ray crystallographic analysis in the case of 5d. Subsequent heating of species 5cd yields, via a methane elimination route, the corresponding Al-THF amido species η2-N,O-{2-CH2N(R)-4,6-tBu2-C6H2O}Al(Me)(THF) (6cd; R = Mes, Diip). Compounds 6c6d, which are of the type {X2}Al(R)(L) (L labile), may well be useful as novel well-defined Lewis acid species of potential use for various chemical transformations. Overall, the sterics of the aminophenol backbone and, to a lesser extent, the reaction conditions that are used for a given ligand/AlMe3 set essentially govern the rather diverse “structural” outcome in these reactions, with a preference toward the formation of mononuclear Al species (i.e. species 5cd and 6cd) as the steric demand of the chelating N,O-ligand increases.  相似文献   

3.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

4.
The zwitterionic vinyliminium complex [Fe2{μ-η13-C(R′)C(S)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (2a) (R′ = p-Me-C6H4 (Tol), Xyl = 2,6-Me2C6H3) undergoes electrophilic addition at the S atom by HSO3CF3, MeSO3CF3, SiMe3Cl, BrCH2Ph, ICH2CHCH2 affording the complexes [Fe2{μ-η13-C(Tol)C(SX)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][Y] (X =  H, Y = SO3CF3, 4a; X = Me, Y = SO3CF3, 4b; X = SiMe3, Y = Cl, 4c; X = CH2Ph, Y = Br, 4d; X = CH2CHCH2, Y = I, 4e).Compound 2a and the corresponding vinyliminium complexes 2b and 2c (R′ = CH2OH, 2b; R′ = Me, 2c) react also with etherated BF3 leading to the formation of the corresponding S-adducts [Fe2{μ-η13-C(R′)C(SBF3)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Tol, 5a; R′ = CH2OH, 5b; R′ = Me, 5c).In analogous reactions, the zwitterionic vinyliminium complexes undergo S-metalation upon treatment with in situ generated [Fp]+[SO3CF3] [Fp = Fe(CO)2(Cp)], leading to the formation of [Fe2{μ-η13-C(R′)C(S-Fp)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3](R′ = CH2OH, 6a; R′ = Me, 6b; R′ = Bun, 6c).Similarly, zwitterionic vinyliminium containing Se in the place of S also undergo Se-electrophilic addition. Thus, the complexes [Fe2{μ-η13-C(R′)C(SeX)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = X = Me, R′ = Tol, 7a; R = Xyl, R′ = Me, X = Fp+, 7b) are obtained upon treatment of the neutral zwitterionic precursors with MeSO3CF3 and [Fp][SO3CF3], respectively.Alkylation at the S or Se atom of the bridging ligand is also accomplished by CH2Cl2, used as solvent, although the reaction is slower compared to more efficient alkylating reagents. The complexes formed by this route are [Fe2{μ-η13-C(R′)C(E-CH2Cl)CN(Me)(R)}(μ-CO)(CO)(Cp)2][X] [E = S, R = Xyl, R′ = Tol, X = Cl, 8a; E = S, R = Xyl, R′ = Me, X = Cl, 8b; E = Se, R = R′ = Me, X = BPh4, 8c].Finally, treatment of the zwitterionic vinyliminium complexes with I2 results in the oxidative coupling with formation of S-S (disulfide) or Se-Se (diselenide) bond. The reactions, performed in the presence of NaBPh4 afford the tetranuclear complexes [Fe2{μ-η13-C(R′)C(E)CN(Me)(R)}(μ-CO)(CO)(Cp)2]2[BPh4]2 [R = Xyl, R′ = CH2OH, E = S, 9a; R = Xyl, R′ = Me, E = S, 9b; R = Xyl, R′ = Bun, E = S, 9c; R = Xyl, R′ = Me, E = Se, 9d; R = Me, R′ = Bun, E = Se, 9e].The molecular structures of 4a, 8c and 9e have been determined by X-ray diffraction studies.  相似文献   

5.
A new synthetic route is described to generate the 4-centre-5 electron donor ring system (P3C2tBu2BuH), via protonation of the lithium salts [LiFe(η4-P2C2tBu2PBu)(η5-C5R5)] (R = H, Me). The molecular structure of [Fe(η4-P3C2tBu2BuH)(η5-C5R5)] (R = Me) has been determined by a single crystal X-ray study.  相似文献   

6.
The reaction of organoaluminum compounds containing O,C,O or N,C,N chelating (so called pincer) ligands [2,6-(YCH2)2C6H3]AliBu2 (Y = MeO 1, tBuO 2, Me2N 3) with R3SnOH (R = Ph or Me) gives tetraorganotin complexes [2,6-(YCH2)2C6H3]SnR3 (Y = MeO, R = Ph 4, Y = MeO, R = Me 5; Y = tBuO, R = Ph 6, Y = tBuO, R = Me 7; Y = Me2N, R = Ph 8, Y = Me2N, R = Me 9) as the result of migration of O,C,O or N,C,N pincer ligands from aluminum to tin atom. Reaction of 1 and 2 with (nBu3Sn)2O proceeded in similar fashion resulting in 10 and 11 ([2,6-(YCH2)2C6H3]SnnBu3, Y = MeO 10; Y = tBuO 11) in mixture with nBu3SniBu. The reaction 1 and 3 with 2 equiv. of Ph3SiOH followed another reaction path and ([2,6-(YCH2)2C6H3]Al(OSiPh3)2, Y = MeO 12, Me2N 13) were observed as the products of alkane elimination. The organotin derivatives 411 were characterized by the help of elemental analysis, ESI-MS technique, 1H, 13C, 119Sn NMR spectroscopy and in the case 6 and 8 by single crystal X-ray diffraction (XRD). Compounds 12 and 13 were identified using elemental analysis,1H, 13C, 29Si NMR and IR spectroscopy.  相似文献   

7.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

8.
The zwitterionic bridging vinyliminium complex [Fe2{μ-η13-C(Tol)C(CS2)CN(Me)2}(μ-CO)(CO)(Cp)2] (5a) undergoes the addition of two equivalents of MeO2C-CC-CO2Me affording the bridging bis-alkylidene complex [Fe2{μ-η13-C(Me)C{C(CO2Me)C(CO2Me)CSC(CO2Me)C(CO2Me)S}CNMe2}(μ-CO)(CO)(Cp)2] (6). One alkyne unit inserts into a C-CS2 bond of the bridging ligand, with consequent rearrangement that leads to the formation of a diene. The reaction shows analogies with the enyne metathesis. The second alkyne is incorporated into the bridging frame via cycloaddition at the thiocarboxylate function, affording a 1,3-dithiolene. The complexes [Fe2{μ-η13-C(R′)C(CS2)CN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Xyl, R′ = Tol, 5b; R = p-C6H4OMe, R′ = Me, 5c; Xyl = 2,6-Me2C6H3), treated with MeO2C-CC-CO2Me and then with HBF4, undergo the cycloaddition of the alkyne with the dithiocarboxylate group and protonation of the dithiocarboxylate carbon, affording the complexes [Fe2{μ-η13-C(R′)C{C(H)SC(CO2Me)C(CO2Me)S}CN(Me)(R)}(μ-CO)(CO)(Cp)2][BF4] (R = Xyl, R′ = Tol, 7a; R = p-C6H4OMe, R′ = Me, 7b), respectively.The X-ray molecular structure of 6 has been determined.  相似文献   

9.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

10.
The reaction of the 1,2,4-triphosphaferrocene [Cp*Fe(η5-P3C2tBu2)] (1) with CuX (X = Cl, Br, I) in a 1:1 stoichiometric ratio leads to the formation of the oligomeric compounds [{Cu(μ-X)}66-X)Cu(MeCN)3{μ,η2-(Cp*Fe(η5-P3C2tBu2))}233-(Cp*Fe(η5-P3C2tBu2))}] (X = Cl (2), Br (3)) and [{Cu(μ-I)}3{Cu(μ3-I)}3Cu(μ6-I){μ,η2-(Cp*Fe(η5-P3C2tBu2))}31-(Cp*Fe(η5-P3C2tBu2))}] (4) revealing Cu(I) halide cages surrounded by 1,2,4-triphosphaferrocene moieties. The reaction of [Cp*Fe(η5-P3C2tBu2)] with CuI in a 1:4 stoichiometry leads to the formation of the two-dimensional polymer [{Cu(μ-I)}4{Cu(μ3-I)(MeCN)}233-(Cp*Fe(P3C2tBu2))}]n (5). The oligomeric compounds show dynamic behavior in solution monitored by 31P NMR spectroscopy. All compounds are additionally characterized by single crystal X-ray diffraction.  相似文献   

11.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

12.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

13.
Two series of di and trinuclear chlorodiorganotin(IV) complexes derived from bis- and tris-dithiocarbamate ligands have been prepared and structurally characterized. The dinuclear complexes 1-2 of the composition {(R2SnCl)2(bis-dtc)} (1, R = Me; 2, R = nBu) have been obtained from R2SnCl2 (R = Me, nBu) and the triethylammonium salt of N,N′-dibenzyl-1,2-ethylene-bis(dithiocarbamate). The trinuclear complexes 3-9 with the general formula {(R2SnCl)3(tris-dtc)} 3, R = Me, tris-dtc = tris-dtc-Me; 4, R = Me, tris-dtc = tris-dtc-iPr; 5, R = Me, tris-dtc = tris-dtc-Bn; 6, R = nBu, tris-dtc = tris-dtc-Me; 7, R = nBu, tris-dtc = tris-dtc- iPr; 8, R = nBu, tris-dtc = tris-dtc-Bn; 9, R = tBu, tris-dtc = tris-dtc-Me) were prepared from R2SnCl2 (R = Me, nBu, tBu) and the potassium dithiocarbamate salts of (tris[2-(methylamino)ethyl]amine) (tris-dtc-Me), (tris[2-(isopropylamino)ethyl]amine) (=tris-dtc-iPr) and (tris[2-(benzylamino)ethyl]amine) (=tris-dtc-Bn). Compounds 1-9 have been analyzed as far as possible by elemental analysis, FAB+ mass spectrometry, IR and NMR (1H, 13C, 119Sn) spectroscopy, and single-crystal X-ray diffraction analysis. The solid state and solution studies showed that the dtc ligands are coordinated to the tin atoms in the anisobidentate manner. In all cases the metal centers are five-coordinate. The coordination geometry is intermediate between square-pyramidal and trigonal-bipyramidal coordination polyhedra with τ-values in the range of 0.32-0.53. For the members of each series characterized in the solid state by X-ray diffraction analysis, different molecular conformations were found. The crystal structures show the presence of C-H?Cl, C-H?S, C-H?π, S?Cl, S?S, Cl?Sn and S?Sn contacts.  相似文献   

14.
A styrene unit has been successfully incorporated into the half metallocene constrained-geometry framework as [(η5-C5Me4)SiMe2(η1-NC6H4CHCH2)]MX2 (M = Ti, X = NMe2, 6a; M = Zr, X = NMe2, 6b; M = Ti, X = Cl, 7a; M = Zr, X = Cl, 7b). These complexes have been characterized with 1H NMR, 13C NMR spectroscopy together with single crystal X-ray diffraction studies of 6a and 6b. A polystyrene-immobilized constrained-geometry catalyst 8 was formed by the radical copolymerization of 7a with styrene using AIBN as the initiator. The complexes 6a, 6b, 7a and 8 gave active homogeneous catalysts for the copolymerization of ethylene with 1-octene when treated with excess methylalumoxane (MAO). The polymerization results showed that 7a was highly active and effective for the incorporation of comonomer 1-octene whereas the zirconium complex 6b and the immobilized catalyst 8 yield low activities and low incorporations of 1-octene in the products with broad molecular weight distributions.  相似文献   

15.
16.
The ansa-bis(cyclopentadiene) compounds, Me2Si(C5HPh4)(C5H4R) (R = H (2); But (3)), have been prepared by the reaction of C5HPh4(SiMe2Cl) (1) with Na(C5H5) or Li(C5H4But), respectively, and transformed to the di-lithium derivatives, Li2{Me2Si(C5Ph4)(C5H3R)} (R = H (4); But (5)), by the action of n-butyllithium. The ansa-zirconocene complexes, [Zr{Me2Si(η5-C5Ph4)(η5-C5H3R)}Cl2] (R = H (6); But (7)), were synthesized from the reaction of ZrCl4 with 4 or 5, respectively. Compounds 6 and 7 have been tested in the polymerization of ethylene and compared with their methyl-substituted analogues, [Zr{Me2Si(η5-C5Me4)(η5-C5H3R)}Cl2] (R = H (8); But (9)). Whilst 8 and 9 are catalytically active, the tetraphenyl-substituted complexes 6 and 7 proved to be inactive in the polymerization of ethylene. This phenomenon has been explained by DFT calculations based on the reaction intermediates in the polymerization processes involving 6 and 7, which showed that the extraction of a methyl group from the zirconocene complex to form the cationic active specie is endothermic and therefore unfavourable.  相似文献   

17.
Cp-functionalized monotroticenes [(η7-C7H7)Ti(η5-C5H4E)] (2, E = Ph2SiCl; 3, E = tBu2SnCl; 12, E = I) and bitroticenes [(η7-C7H7)Ti(η5-C5H4)]2E′ (5, E′ = PPh; 6, E′ = BN(SiMe3)2; 7, E′ = Cp2Ti) were prepared by salt elimination metathesis between the monolithiated troticene [(η7-C7H7)Ti(η5-C5H4Li)]·pmdta (1b) (pmdta = N,N′,N′,N″,N″-pentamethyldiethylene-triamine) and the appropriate electrophile. The troticenyl-substituted zirconocene monochloride [(η7-C7H7)Ti(η5-C5H4ZrClCp*2)] (Cp* = η5-C5Me5) (8) and hafnocene ethoxide [(η7-C7H7)Ti{η5-C5H4Hf(OEt)Cp2}] (Cp = η5-C5H5) (11), and the heterobimetallic μ-oxo complexes [(η7-C7H7)Ti(η5-C5H4MCp2)]2O (9, M = Zr; 10, M = Hf) were obtained instead of the expected zircona- and hafna[1]troticenophanes by reaction of the dilithiated troticene [(η7-C7H6Li)Ti(η5-C5H4Li)]·pmdta (1a) with [Cp2MCl2] (M = Zr, Hf) or [Cp*2ZrCl2] in stoichiometric amounts. These compounds were characterized by single crystal X-ray diffraction analyses and, in the case of 2, 3, 57, 9, 10 and 12, also by elemental analyses and 1H, 13C and 119Sn NMR spectroscopy. Exposure of the troticenyl organotin chloride 3 to moisture resulted in its partial hydrolysis and formation of the organostannoxane-bridged bitroticene 4, while palladium-catalyzed Negishi C–C cross-coupling reaction between the troticenylzinc chloride [(η7-C7H7)Ti(η5-C5H4ZnCl)] (13) and the iodotroticene 12 or iodobenzene (PhI) led to the fulvalene complexes [(η7-C7H7)Ti(η5-C5H4)]2 (14) and [(η7-C7H7)Ti(η5-C5H4Ph)] (15). Compound 4 displays an unsymmetrical structure with the troticenyl fragments cis with respect to the Sn–O–Sn core, whereas compound 14 is centrosymmetrically trans oriented.  相似文献   

18.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

19.
Cp-functionalized monotroticenes [(η7-C7H7)Ti(η5-C5H4E)] (2, E = Ph2SiCl; 3, E = tBu2SnCl; 12, E = I) and bitroticenes [(η7-C7H7)Ti(η5-C5H4)]2E′ (5, E′ = PPh; 6, E′ = BN(SiMe3)2; 7, E′ = Cp2Ti) were prepared by salt elimination metathesis between the monolithiated troticene [(η7-C7H7)Ti(η5-C5H4Li)]·pmdta (1b) (pmdta = N,N′,N′,N″,N″-pentamethyldiethylene-triamine) and the appropriate electrophile. The troticenyl-substituted zirconocene monochloride [(η7-C7H7)Ti(η5-C5H4ZrClCp*2)] (Cp* = η5-C5Me5) (8) and hafnocene ethoxide [(η7-C7H7)Ti{η5-C5H4Hf(OEt)Cp2}] (Cp = η5-C5H5) (11), and the heterobimetallic μ-oxo complexes [(η7-C7H7)Ti(η5-C5H4MCp2)]2O (9, M = Zr; 10, M = Hf) were obtained instead of the expected zircona- and hafna[1]troticenophanes by reaction of the dilithiated troticene [(η7-C7H6Li)Ti(η5-C5H4Li)]·pmdta (1a) with [Cp2MCl2] (M = Zr, Hf) or [Cp*2ZrCl2] in stoichiometric amounts. These compounds were characterized by single crystal X-ray diffraction analyses and, in the case of 2, 3, 57, 9, 10 and 12, also by elemental analyses and 1H, 13C and 119Sn NMR spectroscopy. Exposure of the troticenyl organotin chloride 3 to moisture resulted in its partial hydrolysis and formation of the organostannoxane-bridged bitroticene 4, while palladium-catalyzed Negishi C–C cross-coupling reaction between the troticenylzinc chloride [(η7-C7H7)Ti(η5-C5H4ZnCl)] (13) and the iodotroticene 12 or iodobenzene (PhI) led to the fulvalene complexes [(η7-C7H7)Ti(η5-C5H4)]2 (14) and [(η7-C7H7)Ti(η5-C5H4Ph)] (15). Compound 4 displays an unsymmetrical structure with the troticenyl fragments cis with respect to the Sn–O–Sn core, whereas compound 14 is centrosymmetrically trans oriented.  相似文献   

20.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号