首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper describes a combined fracture–plastic model for concrete. Tension is handled by a fracture model, based on the classical orthotropic smeared crack formulation and the crack band approach. It employs the Rankine failure criterion, exponential softening, and it can be used as a rotated or a fixed crack model. The plasticity model for concrete in compression is based on the Menétrey–Willam failure surface, the plastic volumetric strain as a hardening/softening parameter and a non-associated flow rule based on a nonlinear plastic potential function. Both models use a return-mapping algorithm for the integration of constitutive equations. Special attention is given to the development of an algorithm for the combination of the two models. The suggested combination algorithm is based on a recursive substitution, and it allows for the two models to be developed and formulated separately. The algorithm can handle cases when failure surfaces of both models are active, but also when physical changes such as crack closure occur. The model can be used to simulate concrete cracking, crushing under high confinement and crack closure due to crushing in other material directions. The model is integrated in a general finite element package ATENA and its performance is evaluated by comparisons with various experimental results from the literature.  相似文献   

3.
Part II of this study uses micromechanically accurate foam models to simulate and study the dynamic crushing of open-cell foams. The model starts as random soap froth generated using the Surface Evolver software to mimic the microstructure of the foams tested. The linear edges of the cellular microstructure are “dressed” with appropriate distributions of solid to match those of ligaments in the actual foams and their relative density. The ligaments are modeled as shear-deformable beams with variable cross sections discretized with beam elements in LS-DYNA, while the Al-alloy is modeled as a finitely deforming elastic–plastic material. The numerical contact algorithm of the code is used to model ligament contact and limit localized cell crushing. The quasi-static and all dynamic crushing experiments in Part I are simulated numerically. The models are shown to reproduce all aspects of the crushing behavior including the formation and evolution of nearly planar shocks, the force acting at the two ends, the shock front velocity, the strain in the crushed material behind the shock, and the energy absorbed.  相似文献   

4.
The two-part series of papers presents the results of a study of the crushing behavior of open-cell Al foams under impact. In Part I, direct and stationary impact tests are performed on cylindrical foam specimens at impacts speeds in the range of 20–160 m/s using a gas gun. The stress at one end is recorded using a pressure bar, while the deformation of the entire foam specimen is monitored with high-speed photography. Specimens impacted at velocities of 60 m/s and above developed nearly planar shocks that propagated at well-defined velocities crushing the specimen. The shock speed vs. impact speed, and the strain behind the shock vs. impact speed representations of the Hugoniot were both extracted directly from the high-speed images. The former follows a linear relationship and the latter asymptotically approaches a strain of about 90% at higher velocities. The Hugoniot enables calculation of all problem variables without resorting to an assumed constitutive model. The compaction energy dissipation across the shock is shown to increase with impact velocity and to be significantly greater than the corresponding quasi-static value. Specimens impacted at velocities lower than 40 m/s exhibited response and deformation patterns that are very similar to those observed under quasi-static crushing. Apparently, in this impact speed regime inertia increases the energy absorption capacity very modestly.  相似文献   

5.
ABSTRACT

A new approach is presented to synthesize dynamic properties of a system that is composed of multiple degree of freedom subsystems attached to a multiple degree of freedom primary system at several points. Natural frequencies and mode shapes of the combined system are obtained in terms of modal properties of the primary system, subsystems, and their interaction parameters. The present solution is compared to the exact solution as well as approximate solutions obtained by earlier investigators. Derived properties can be used in conjunction with any response spectrum or random vibration formulation, to obtain the deterministic or probabilistic dynamic response of subsystems to any arbitrary excitation.  相似文献   

6.
Dynamic ana1ysis of the viscoelastic simple supporteJ beam has beenmade in accordance with the re lationship between stre ss and strain expressedby the simplest Voigt mechanical mode1,from which several analytic ex-pressions have been obtained.It is shown that the reduction of the ratio of natural frequencips peog-resses with the increase of the exciting frequency for high modes(Tab.l).1n the final part of this paper,the forced vibration oL simple supportedbeam subjected to a random and harmonic excitation has also been dealt with,and the repre sentations of the beam defIection have been derived.  相似文献   

7.
Cables (or wire ropes) made from NiTi shape memory alloy (SMA) wires are relatively new and unexplored structural elements that combine many of the advantages of conventional cables with the adaptive properties of SMAs (shape memory and superelasticity) and have a broad range of potential applications. In this two part series, an extensive set of uniaxial tension experiments was performed on two Nitinol cable constructions, a 7 × 7 right regular lay and a 1 × 27 alternating lay, to characterize their superelastic behavior in room temperature air. Details of the evolution of strain and temperature fields were captured by simultaneous stereo digital image correlation and infrared imaging, respectively. Here in Part I, the nearly isothermal, superelastic responses of the two cable designs are presented and compared. Overall, the 7 × 7 construction has a mechanical response similar to that of straight wires with propagating transformation fronts and distinct stress plateaus during stress-induced transformations. The 1 × 27 construction, however, exhibits a more compliant and stable mechanical response, trading a decreased force for additional elongation, and does not exhibit transformation fronts due to the deeper helix angles of the layers. In Part II that follows, selected subcomponents are dissected from the two cable’s hierarchical constructions to experimentally break down the cable’s responses.  相似文献   

8.
基于离散元思想和Voronoi单元划分技术,利用混凝土细观刚体弹簧元模型,开展了混凝土楔入劈拉试件和三点弯曲切口梁的断裂过程数值仿真分析。从裂缝开展过程、试件破坏形态、荷载-张口位移曲线(P-CMOD)和断裂能等方面,将数值分析结果与已有的试验结果进行了对比。结果表明,细观刚体弹簧元法较准确地模拟了混凝土楔入劈拉试件和三点弯曲切口梁断裂过程。最后,分析了缝高比和骨料体积含量对混凝土断裂过程的影响规律,发现断裂能随骨料体积含量呈单调递增趋势。  相似文献   

9.
10.
The paper studies the dynamic behavior of perfect rigid-plastic plates in the form of a sector with hinged or clamped sides under short-term intensive loads. Two dynamic deformation mechanisms are demonstrated. The dynamic equation is derived for each of the mechanisms. The realization conditions for the mechanisms are analyzed. Analytical expressions are derived for the ultimate (high) loads and the maximum residual deflection. Numerical examples are given  相似文献   

11.
Recent theoretical assessments of metal/polymer bilayers indicate a potentially significant delay in the onset of ductile failure modes, especially under dynamic loading, due to strain hardening of the polymer. The response of copper/polyurethane bilayers under dynamic and quasi-static loadings is investigated via static tensile, static bulge forming and dynamic bulge forming tests. Two polyurethanes PU1 and PU2 were chosen with a significant contrast in stiffness and ductility: PU1 has a glass transition temperature Tg close to ?56 °C and at room temperature it has a low modulus, low strength and a high tensile failure strain. In contrast, PU2 has a Tg of 49 °C and at room temperature it has a high modulus and strength but a much smaller tensile failure strain. In most of the tests, the polymer coatings were approximately twice the thickness of the metal layer. Under static loadings (tensile and bulge forming) the PU2 bilayer outperformed the uncoated metal plate of equal mass while the PU1 bilayer had a performance inferior to the equivalent uncoated plate. We attribute this to the fact that the PU2 retards the necking of the copper layer and thus increases its energy absorption capacity while the PU1 coating provides no such synergistic effect. The dynamic bulge forming tests indicate that on an equal mass basis, the dynamic performance of the PU2 bilayers with a weakly bonded polymer coating were comparable to the uncoated plates but intriguingly, when the PU2 was strongly adhered to the copper plates the performance of these bilayers was inferior to that of the uncoated plates. Thus, the coatings do not provide dynamic performance benefits on an equal mass basis. However, it is shown that increasing the mass of a plate by adding a polyurethane layer can improve the performance for a given total blast impulse. Given the ease of applying polyurethane coatings they may provide a practical solution to enhancing the blast resistance of existing metallic structures.  相似文献   

12.
This paper deals with the forced harmonie responses of the discrete or continuous dampedsystems to harmonic excitation,where the viscous damping matrix cannot be diagonalized.Theexplicit expressions of the response solutions are given.Hence,with these expressions,some generaland analytical study of some phenomena in vibration is made.For example,the“fixed amplitudepoint”phenomena in the single damped systems have been demonstrated generally.The conditions,under which all forces that exert on the system and possess common phase,which will excite com-mon phase responses,are also discussed.The solutions deduced here only involve the inverse matrices of lower order.Thus,in thenumerical computation for digital computers,the method is more simple,economical,and accuratethan others.The method described here can be used in the analysis of unbalance responses of the rotorsystems.  相似文献   

13.
Sessa  Salvatore  Marmo  Francesco  Vaiana  Nicoló  Rosati  Luciano 《Meccanica》2019,54(9):1451-1469
Meccanica - Capacity domains of reinforced concrete elements, computed according to Eurocode 2 provisions, have been investigated from a probabilistic perspective in order to examine the...  相似文献   

14.
Different fracture methods in meshfree methods are studied and compared. Our studies focuses on the elementfree Galerkin (EFG) method though similar results were obtained with SPH and MPM. Three major fracture approaches are tested: Natural fracture, smeared crack method and discrete crack method. In the latter method, the crack is represented as continuous line and as set of discrete crack segment. Natural fracture is a key feature of meshfree methods. In some numerical examples, we will show that natural fracture criterion cannot handle even simple fracture adequately. Moreover, we will show in our numerical examples that smeared crack models can capture global behavior appropriately for simple examples but not for complex examples involving branching cracks. The most accurate methods are discrete fracture methods.  相似文献   

15.
Many soft materials and biological tissues are featured with the tension–compression asymmetry of constitutive relations. The surface wrinkling of a stiff thin film lying on a compliant substrate is investigated through theoretical analysis and numerical simulations. It is found that the tension–compression asymmetry of the soft substrate not only affects the critical strain of buckling but, more importantly, may also influence the wrinkling pattern that occurs in the film–substrate system under specified loading conditions. Due to this mechanism, the thin film subjected to equi-biaxial compression may first buckle into a hexagonal array of dimples or bulges, instead of the checkerboard pattern, and consequently evolve into labyrinths with further loading. Under non-equi-biaxial compression, the system may buckle either into a parallel bead-chain pattern or a stripe pattern, depending on the substrate nonlinearity and the loading biaxiality. Phase diagrams are established for the wrinkling patterns in a wide range of geometric and mechanical parameters, which facilitate the design of surface patterns with desired properties and functions.  相似文献   

16.
17.
In this paper, we established a strain-gradient damage model based on microcrack analysis for brittle materials. In order to construct a damage-evolution law including the strain-gradient effect, we proposed a resistance curve for microcrack growth before damage localization. By introducing this resistance curve into the strain-gradient constitutive law established in the first part of this work (Li, 2011), we obtained an energy potential that is capable to describe the evolution of damage during the loading. This damage model was furthermore implemented into a finite element code. By using this numerical tool, we carried out detailed numerical simulations on different specimens in order to assess the fracture process in brittle materials. The numerical results were compared with previous experimental results. From these studies, we can conclude that the strain gradient plays an important role in predicting fractures due to singular or non-singular stress concentrations and in assessing the size effect observed in experimental studies. Moreover, the self-regularization characteristic of the present damage model makes the numerical simulations insensitive to finite-element meshing. We believe that it can be utilized in fracture predictions for brittle or quasi-brittle materials in engineering applications.  相似文献   

18.
In this paper, we first describe a homogenization methodology with the aim of establishing strain gradient constitutive relations for heterogeneous materials. The methodology presented in this work includes two main steps. The first one is the construction of the average strain-energy density for a well-chosen RVE by using a homogenization technique. The second one is the transformation of the obtained average strain-energy density to that for the continuum. An important characteristic of this method is its self-consistency with respect to the choice of the RVE: the strain gradient constitutive law built by using the present method is independent of the size and the form of the RVE. In the frame of this homogenization procedure, we have constructed a strain gradient constitutive relation for a two-dimensional elastic material with many microcracks by adopting the self-consistent scheme. It was shown that the effective behavior of cracked solids depends not only on the crack density but also on the average crack size with which the strain gradient is associated. The proposed constitutive relation provides a starting point for the development of an evolution law of damage including strain gradient effect, which will be presented in the second part of this work.  相似文献   

19.
为了解决评估超高强活性粉末钢纤维混凝土的抗侵彻能力问题,根据混凝土在弹体侵彻过程中的介质状态及能量的分配关系,揭示了侵彻近区耗散能量结构与破碎区之间的比例尺度关系。由于近区介质的运动特性变形接近一维应变状态,受力类似于流体动力学状态,据此推导并简化了具有宽广的适用范围的侵彻计算公式,认为侵彻的深度主要由弹体的质量、形状、速度及靶体的强度、密度、断裂韧度、变形波速决定。通过多次的实弹试验,验证了公式的可靠性,得到了RPC的抗侵彻能力是普通混凝土的3倍的结论。  相似文献   

20.
The purpose of the present study is to thoroughly understand the stress–strain behavior of polycrystalline NiTi deformed under tension versus compression. To do this, a micro-mechanical model is used which incorporates single crystal constitutive relationships and experimentally measured polycrystalline texture into the self-consistent formulation. For the first time it is quantitatively demonstrated that texture measurements coupled with a micro-mechanical model can accurately predict tension/compression asymmetry in NiTi shape memory alloys. The predicted critical transformation stress levels and transformation stress–strain slopes under both tensile and compressive loading are consistent with experimental results. For textured polycrystalline NiTi deformed under tension it is demonstrated that the martensite evolution is very abrupt, consistent with the Luders type deformation experimentally observed. The abrupt transformation under tension is attributed to the fact that the majority of the grains are oriented along the [111] crystallographic direction, which is soft under tensile loading. Since single crystals of the [111] orientation are hard under compression it is also demonstrated that under compression the martensite in textured polycrystalline NiTi evolves relatively slower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号