首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Bridging ligands incorporating 2,2′-bipyridine as a chelating component have been utilised for several decades and are widely employed in coordination chemistry, supramolecular chemistry and materials synthesis. Such ligands form stable 5-membered chelate rings upon coordination to a metal. Two related chelating units, di-2-pyridylamine and di-2-pyridylmethane, which form 6-membered chelate rings when coordinated to a metal, have been studied far less as components of bridging ligands but have recently garnered significant levels of attention. Of around 140 reports on the incorporation of these moieties into bridging ligands some 75% have been published in the last 15 years. This review covers the synthesis of bridging ligands containing di-2-pyridylamine and di-2-pyridylmethane chelating moieties, and a survey of their coordination and supramolecular chemistry. Applications of the resulting systems as structural and functional models of enzyme active sites, and spin-crossover materials, and for investigations into anion–π interactions are covered.  相似文献   

2.
Tetrazole compounds have been studied for more than one hundred years and applied in various areas. Several years ago Sharpless and his co-workers reported an environmentally friendly process for the preparation of 5-substituted 1H-tetrazoles in water with zinc salt as catalysts. To reveal the exact role of the zinc salt in this reaction, a series of hydrothermal reactions aimed at trapping and characterizing the solid intermediates were investigated. This study allowed us to obtain a myriad interesting metal-organic coordination polymers that not only partially showed the role of the metal species in the synthesis of tetrazole compounds but also provided a class of complexes displaying interesting chemical and physical properties such as second harmonic generation (SHG), fluorescence, ferroelectric and dielectric behaviors. In this tutorial review, we will mainly focus on tetrazole coordination compounds synthesized by in situ hydrothermal methods. First, we will discuss the synthesis and crystal structures of these compounds. Their various properties will be mentioned and we will show the applications of tetrazole coordination compounds in organic synthesis. Finally, we will outline some expectations in this area of chemistry. The direct coordination chemistry of tetrazoles to metal ions and in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano group will be not discussed in this review.  相似文献   

3.
To evaluate the possibility of introducing azole nucleosides as building blocks for metal-mediated base pairs in artificial oligonucleotides, imidazole nucleoside, 1,2,4-triazole nucleoside and tetrazole nucleoside have been synthesized and characterized. The X-ray crystal structures of p-toluoyl-protected 1,2,4-triazole and tetrazole nucleosides are reported. Contrary to the situation primarily found for deoxyribonucleosides, the sugar moieties adopt C3'-endo conformations. The acidity of the beta nucleosides increases with increasing number of nitrogen ring atoms, giving pKa values of 6.01 +/- 0.05, 1.32+/-0.05 and <-3, respectively. This decrease in basicity results in a decreasing ability to form 2:1 complexes with linearly coordinating metal ions such as Ag+ and Hg2+. In all cases, the Ag+ complexes are of higher stability than the corresponding Hg2+ complexes. Whereas imidazole nucleoside forms highly stable 2:1 complexes with both metal ions (estimated log beta2 values of >10), only Ag+ is able to reach this coordination pattern in the case of triazole nucleoside (log beta2 = 4.3 +/- 0.1). Tetrazole nucleoside does not form 2:1 complexes at all under the experimental conditions used. These data suggest that imidazole nucleoside, and to a lesser extent 1,2,4-triazole nucleoside, are likely candidates for successful incorporation as ligands in oligonucleotides based on metal-mediated base pairs. DFT calculations further corroborate this idea, providing model complexes for such base pairs with glycosidic bond distances (10.8-11.0 Angstroms) resembling those in idealized B-DNA (10.85 Angstroms).  相似文献   

4.
This article, presented from a personal point of view, is concerned with the design of ligands intended to give specifically either binuclear or tetranuclear metal complexes or coordination polymers. No attempt is made to provide a comprehensive coverage of these topics, the focus being mainly upon results from our laboratory. Some emphasis is placed upon aspects of the historical development of the deliberate construction of coordination polymers (aka MOFs)--materials promising useful applications, the study of which continues to expand exponentially. Some of our recent research is described in which the carbonate ion and the tetracyanoquinodimethane dianion are used as bridging ligands to generate targeted coordination polymers. It is intended that Dalton Perspectives be easily comprehensible to non-specialists in the field; an average second year university chemistry student should be easily able to understand the present contribution.  相似文献   

5.
The ability of ligands to bind different metal ions is the basis for the design of dinucleating or polynucleating ligands. Indeed, macrocyclic and macroacyclic compounds have attracted much attention in recent years due to their role in understanding molecular processes that occur in biochemistry, catalysis and material science. For example, much effort has been expended on the construction of coordination polymers and on complexes with double or triple helicate structures. In this review, our recent studies into macrocycles containing tetrazole functional groups are summarised.  相似文献   

6.
冯丹  隗翠香  夏炎 《色谱》2017,35(3):237-244
金属有机骨架(MOFs)材料是一类以过渡金属为中心、含杂原子的有机物为配体、通过配位作用形成的周期性网络多孔晶体材料。与其他的多孔材料相比,MOFs配体种类繁多,比表面积极大,孔径大小可调控且具有特殊(饱和或不饱和)的金属位点,在气体存储、催化、吸附与分离等领域有广阔的应用前景。近年来,功能化MOFs对污染物的富集和去除成为学者关注的热点。这是由于通过对MOFs进行功能化修饰,能够改变MOFs的孔径大小、表面带电性质等物化性质,从而实现对目标物更高效的吸附。该文综述了近年来功能化MOFs对饮用水污染物吸附的研究进展,包括饮用水污染物的类型及危害、功能化MOFs的制备方法以及去除饮用水污染物的应用,并对今后的发展前景进行了展望。  相似文献   

7.
螺旋结构配位聚合物在光学装置、生物模拟化学、非对称催化化学、手性识别、生物结构等多学科领域的应用,引起了人们极大的兴趣。本文综述了氮杂环配体自组装螺旋结构配位聚合物的最新进展,按照咪唑、三唑、吡啶、嘧啶及其衍生物配体分类总结了它们构建螺旋配位聚合物的结构,并简述了通过自发手性识别过程得到纯手性螺旋配位聚合物的影响因素,展望了具有螺旋链状配位聚合物的发展前景以及其开发应用潜能。  相似文献   

8.
Transition metal complexes in which hydrocarbons serve as σ,σ-, σ,π- or π,π-bound bridging ligands are currently of great interest. This review presents efficient and directed syntheses for such compounds, which often have very aesthetic structures. These reactions are among the most important reaction types in modern organometallic chemistry. They can be a useful aid for the synthesis of tailor-made compounds, for example, for models of catalytic processes and, specifically, for the construction of heterometallic compounds. We will discuss reactions of electrophilic complexes with nucleophilic ones, numerous transformations of (functionalized) hydrocarbons with metal complexes, the currently very topical complexes with bridging acetylide and carbide ligands, and organometallic polymers, which can be expected to have interesting and novel materials properties. Chisholm
  • 1 M. H. Chisholm, Polyhedron 1988 , 7, 757–1077.
  • has described the importance of these complexes as follows: “Central to the development of polynuclear and cluster chemistry are bridging ligands and central to organometallic chemistry are metal–carbon bonds. Thus bridging ligands hold a pivotal role ins the development of Binuclear and polynuclear organometallic chemistry”.  相似文献   

    9.
    Over the past decades, the pincer ligands have attracted an increasing interest due to the unique properties of the coordination compounds they form. These monoanionic tridentate ligands are of great importance in organometallic and coordination chemistry. Their complexes with transition metals are used as homogeneous catalysts for various processes and also as functional materials with specified properties. The metal complexes formed by the pincer ligands provide an efficient alternative to the existing catalysts based on noble metals and, hence, the use of these complexes is a promising task of the modern chemical science. Therefore, nickel as the most accessible and inexpensive analog of palladium and platinum is of great practical interest. In this review, we consider the diversity of nickel complexes with pincer ligands, as well as the existing methods for their preparation and practical application.  相似文献   

    10.
    Li Y  Wang N  Gan H  Liu H  Li H  Li Y  He X  Huang C  Cui S  Wang S  Zhu D 《The Journal of organic chemistry》2005,70(24):9686-9692
    [structure: see text] New perylene bisimide dyes bearing 3,5-bis(2-hydroxyphenyl)-1,2,4-triazole receptor units with different spacers have been synthesized and characterized. The fluorescence and electronic properties of these compounds have been studied. MALDI-TOF, UV-vis, and fluorescence titration experiments proved that monotopic perylene bisimide ligands could be assembled into dimmers by Fe(III) coordination. The coordination properties of the ditopic perylene bisimide ligands have also been studied preliminarily. Furthermore, the SEM images indicated that well-defined nanoscale structures could be fabricated by self-assembly due to metal ion coordination and pi-pi stacking interactions of perylene rings with the help of a proper spacer.  相似文献   

    11.
    Some derivatives of 2-azidoimidazole and 3(5)azido-s-triazole were prepared to investigate the possibility of an azido/tetrazole equilibrium in these compounds. An explanation for observed differences in azido/tetrazole equilibrium between azole series and azine or thiazole series is suggested.  相似文献   

    12.
    13.
    王彦妮  冯爱玲  徐榕 《化学通报》2019,82(4):291-298
    金属有机骨架材料(MOFs)是指由含氮、氧等多齿有机配体与金属离子通过自组装形成的配位聚合物。由于金属有机骨架材料的大比表面积和高孔隙率等优点使其在药物负载领域有广泛应用。近年来,纳米金属有机骨架材料(NMOFs)因既具有MOFs的特点,又具有纳米材料独特的理化性能,使其兼具药物负载量高、目标靶向性好、表面易改性和生物相容性优良等特点,已成为一种优异的纳米级载药系统。本文介绍了NMOFs的常用制备方法,主要包括溶剂热法、反相微乳液法与超声波法,并对其优缺点进行了讨论;详细阐述了载药NMOFs的特性及其不同类型对于各类药物的负载能力;指出今后其主要的研究方向是改善生物相容性、实现更有效的表面功能化、扩展生物NMOFs及其负载药物的种类,使其应用到更多疾病的治疗上。  相似文献   

    14.
    The chemistry of transition metal dithiolene complexes containing N coordinating groups and the corresponding TTF donors, is reviewed starting from the ligand synthesis to the coordination structures where these dithiolene complexes are used as bridging units. The dithiolene ligands containing N coordinating atoms present two coordination poles which can selectively bind different metals and act as bridging units in a variety of coordination architectures. The transition metal dithiolene complexes based on these N containing ligands and the corresponding TTF donors can be themselves regarded as ligands. These can be used to coordinate other metals, potentially leading to a diversity of hetero metallic coordination architectures. With the use of appropriate auxiliary ligands they can lead to discrete metal complexes. In addition they can lead to more extended polymeric structures of different dimensionality such as 1D chains, 2D layers or even 3D polymers can also be obtained.  相似文献   

    15.
    The synthesis of neutral [Cu(dpm)2] and [Cu(dpm)(acac)] (dpm = dipyrromethene, acac = acetylacetonato) complexes is presented. The formation of the asymmetric metal complexes was monitored by electronic absorption and infrared spectroscopy. Two of the complexes investigated, containing pyrdpm ligands (pyrdpm = pyridyldipyrromethene), form 1-dimensional coordination polymers. The coordination polymers formed by these complexes have been characterized by single-crystal X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The complexes possess square pyramidal coordination geometries with the apical position occupied by the meso-pyridyl donor of a neighboring complex in the crystal lattice. The features of these coordination complexes that facilitate formation of extended solids have been probed. Symmetric [Cu(pyrdpm)2] complexes are unable to form coordination solids due to steric hindrance at the metal center. Use of cyano donors in complexes such as [Cu(cydpm)(acac)] (cydpm = cyanodipyrromethene) in lieu of pyridyl donors also fail to form network solids. Through these systematic studies, both the basic coordination chemistry of these complexes and the fundamental design requirements for synthesizing this novel class of coordination polymers have been defined.  相似文献   

    16.
    The chemistry of low-valent organophosphorus compounds such as phosphaalkenes and phosphaalkynes has undergone rapid development in the last two decades. This development also includes the coordination chemistry of these species, which can act as versatile ligands in metal complexes. Metallophosphaalkenes are compounds in which one or more of the organic substituents on the P?C unit is replaced by a transition metal complex fragment. Metallophosphaalkenes have emerged from an existence as laboratory curiosities to become a link between main group and organometallic complex chemistry. The great richness of their chemistry not only mirrors the specific properties of the individual building block, but also shows novel and individual traits. Particular examples are cycloadditions of these electron-rich heteroalkenes with electron-deficient alkenes, alkynes, azo, and diazo compounds. These often lead to novel types of reaction and compounds. Metallophosphaalkenes are also important as intermediates in all metal-assisted cyclooligomerizations of phosphaalkynes.  相似文献   

    17.
    Studies on lanthanide and actinide halide complexes with neutral O- and/or N-donor ligands have intensified in recent years due to their implications in homogeneous catalysis, magnetic and optical materials, as synthons for the synthesis of novel coordination and organometallic compounds and, for Ln(II) halide complexes, as reducing agents in organic synthesis. Synthetic strategies, structural diversity as well as some important properties and reactivities of these anhydrous metal (including scandium and yttrium) halide complexes are reviewed here. These complexes also hold potential as starting materials for constructing more sophisticated heterometallic assemblies by crystal engineering; the compounds of this class, either discrete ion-pairs or coordination polymers, being discussed separately under the heading heterometallic lanthanide and actinide halide complexes. The aim of this article is to provide a reference text for the researchers working in the lanthanide and actinide coordination chemistry field and to identify and signify the area of future research.  相似文献   

    18.
    Research on incorporating macrocycles into metal–organic frameworks (MOFs) has been performed intensively due to the opportunities afforded by merging a merit of macrocycles with MOF chemistry, which lead to novel hybrid materials for potential application. Among the numerous kinds of macrocycles, azamacrocycles are used as traditional and popular chelating agents in supramolecular coordination chemistry, because they are very easily functionalized by joining pendant arms and possess a strong propensity to complex metal cations, accounting for the amine functionalities. With this as background, many types of azamacrocyclic MOFs have been synthesized, granting compositionally and topologically new MOFs. The macrocyclic rings can serve as additional adsorption sites or catalytic sites, and the pendant arms on the macrocycles can also play versatile roles such as structure-directing agents, pore-decorating moieties, or rotatable molecular gates for opening/closing pores. In this review, we comprehensively discuss the syntheses, structures, and features of azamacrocyclic MOFs reported to date. Based on representative studies, advantages of these compounds are described, such as how the azamacrocycles increase the structural diversity and complexity of the MOFs and induce novel structural properties within the architectures.  相似文献   

    19.
    Coinage metals nitrogen chemistry has not been studied extensively until recently. The focus of this review is the base- and halide-free complexes of the monoanionic nitrogen ligands. This review describes how minor ligand modifications can result in a drastic change in the metal–metal interactions in multinuclear compounds. Crystal structures of these complexes show individual complexes, dimers, supramolecular columnar packing or more complex supramolecular aggregates. Bulky substituents on the ligands can prevent intermolecular metal–metal interactions or the formation of supramolecular architectures. The nuclearity and metal–metal interactions in these complexes are controlled by ligand steric and electronic factors and solvent of crystallization. Many classes of nitrogen ligand coordination compounds have given rise to advances in several fundamental and applied research aspects. Recent potential applications of nitrogen ligand complexes are highlighted particularly for those complexes included in this review.  相似文献   

    20.
    《中国化学》2018,36(8):754-764
    Two‐dimensional (2D) metal‐organic layers (MOLs) are the 2D version of metal‐organic frameworks (MOFs) with nanometer thickness in one dimension. MOLs are also known as 2D‐MOFs, 2D coordination polymers, ultrathin MOF nanosheets (UMOFNs) or coordination nanosheets in literature. This new category of 2D materials has attracted a lot of interests because of the opportunity in combining molecular chemistry, surface/interface chemistry and material chemistry of low dimensional materials in these systems. Several synthetic strategies have been developed for the construction of 2D MOLs, but the general synthesis of MOLs still presents a challenge. This tutorial level review summarizes the recent progress in the fabrication of novel 2D MOLs and aims to highlight challenges in this field.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号