首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many luminescent gold(I) compounds are known, but in the vast majority of gold(III) complexes reported until recently, room temperature emission in fluid solution does not occur. As for other d(8) and d(6) metals, the key to obtaining gold(III) compounds with favorable luminescence properties seems to be the use of cyclometalating ligands that ensure very strong ligand fields. Recent progress in this emerging research field is discussed, and where appropriate, comparison to isoelectronic platinum(II) complexes and their photophysical properties is made.  相似文献   

2.
3.
The first Re(I)-dipyrrinato complexes are reported. Complexes with the general formulas fac-[ReL(CO)(3)Cl](-), fac-[ReL(CO)(3)PR(3)], and [ReL(CO)(2)(PR(3))(PR'(3))] have been prepared, where L is one of a series of meso-aryl dipyrrinato ligands. Access to these complexes proceeds via the reaction of [Re(CO)(5)Cl] with the dipyrrin (LH) to produce fac-[ReL(CO)(3)Cl](-). A subsequent reaction with PR(3) (R = phenyl, butyl) leads to displacement of the chloride ligand to generate fac-[ReL(CO)(3)PR(3)], and further reaction with PR'(3) leads to the displacement of the CO ligand trans to the first PR(3) ligand to give trans(P), cis(C)-[ReL(CO)(2)(PR(3))(PR'(3))]. The structures of the complexes were determined in the solid state by X-ray crystallography and in solution by (1)H NMR spectroscopy. Electronic absorption spectroscopy reveals a prominent band in the visible region at relatively low energy (472-491 nm) for all complexes, which is assigned as a π-π* transition of the dipyrrin chromophore. Weak emission (λ(ex) = 485 nm, quantum yields <0.01) was observed for [ReL(CO)(3)Cl](-) and [ReL(CO)(3)PR(3)] complexes, but no emission was generally evident from the [ReL(CO)(2)(PR(3))(PR'(3))] complexes. On the basis of the large Stokes shift (~6000 cm(-1)), the emission is ascribed to phosphorescence from a triplet excited state. The emission intensity is sensitive to dissolved oxygen and methyl viologen; a Stern-Volmer plot in the latter case gave a straight line. Photochemical ligand substitution reactions of [ReL(CO)(3)PR(3)] were induced by excitation with a 355 nm laser in acetonitrile. [ReL(CO)(2)(PR(3))(CH(3)CN)] is formed as a putative intermediate, which reacts thermally with added PR'(3) to produce [ReL(CO)(2)(PR(3))(PR'(3))] complexes.  相似文献   

4.
Gold and its complexes have long been known to display unique biological and medicinal properties. Extensive cell-based (in vitro) and animal (in vivo) studies have revealed the potent anti-cancer activities of diverse classes of gold(I) and gold(III) complexes. Most of the reported anti-cancer active gold complexes are highly cytotoxic and unstable under physiological conditions, which hamper their development to be launched clinically. Several clinical reports showed that lipophilic organic cations are promising anti-cancer drug candidates targeting to mitochondria. Through metal-ligand coordination, gold(I) and gold(III) ions can form stable lipophilic cations containing organic ligands having tunable lipophilicity and diverse functionalities. The present highlight summarizes the recent development of lipophilic gold(III) cations and gold(I) complexes with promising anti-cancer activities.  相似文献   

5.
Summary Some rhodanine (HL) complexes of silver(I) and gold(1) have been prepared and studied by conductivity measurements and by i.r. spectroscopy. Structures for the complexes are proposed.  相似文献   

6.
The neutral and cationic dinuclear gold(I) compounds [(μ-N-N)(AuR)(2)] (N-N = 2,2'-azobispyridine (2-abpy), 4,4'-azobispyridine (4-abpy); R = C(6)F(5), C(6)F(4)OC(12)H(25)-p, C(6)F(4)OCH(2)C(6)H(4)OC(12)H(25)-p) and [(μ-N-N){Au(PR(3))}(2)](CF(3)SO(3))(2) (N-N = 2-abpy, 4-abpy, R = Ph, Me) have been obtained by displacement of a weakly coordinated ligand by an azobispyridine ligand. The corresponding silver(I) dinuclear [(μ-2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] and polynuclear [{Ag(CF(3)SO(3))(4-abpy)}(n)] compounds have been obtained. The molecular structures of [(μ-2-abpy){Au(PPh(3))}(2)](CF(3)SO(3))(2) and [(μ-4-abpy){Au(PMe(3))}(2)](CF(3)SO(3))(2) have been confirmed by X-ray diffraction studies and feature linear gold(I) centers coordinated by pyridyl groups, and non-coordinated azo groups. In contrast the X-ray structure of [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] shows tetracoordinated silver(I) centers involving chelating N-N coordination by pyridyl and azo nitrogen atoms. The gold(I) compounds with a long alkoxy chain do not behave as liquid crystals, and decompose before their melting point. The soluble gold(I) derivatives are photosensitive in solution and isomerize to the cis azo isomer under UV irradiation, returning photochemically or thermally to the most stable initial trans isomer. The silver(I) derivative [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] also photoisomerizes in solution under UV irradiation, showing that its solid state structure, which would block isomerization by azo coordination, is easily broken. These processes have been monitored by UV-vis absorption and (1)H NMR spectroscopy. All these compounds are non-emissive in the solid state, even at 77 K.  相似文献   

7.
Dias HV  Flores JA 《Inorganic chemistry》2007,46(15):5841-5843
The synthesis and X-ray structures of gold(I) adducts supported by beta-diketiminates have been reported. {[HC{(H)C(2,4,6-Br(3)C(6)H(2))N}(2)]Au}(2) and {[HC{(H)C(Dipp)N}(2)]Au}(2) [Dipp = 2,6-(i-Pr)(2)C(6)H(3)] are easily isolable solids and feature 12-membered macrocyclic ring structures. beta-Diketiminate ligands adopt a W-shaped conformation. Gold atoms are bonded to the nitrogen atoms in a linear fashion. (1)H NMR signals corresponding to the protons at the beta-diketiminate ligand beta-C position of the gold adducts appear at a notably high downfield region.  相似文献   

8.
Summary New compounds of formula [AuL(PMe3)]Cl [L = imidazolidine-2-thione (Imt), 1,3-diazinane-2-thione (Diaz), 1,3-diazepine-2-thione (Diap) and their derivatives] have been synthesized and characterized by elemental analysis, and i.r., 13C- and 31P-n.m.r. spectroscopies. The Diap ligand, which incorporates the thione in a seven-membered heterocyclic ring, binds more strongly to AuI compared to its Diaz (six-membered ring) and Imt (five-membered ring) analogues.  相似文献   

9.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

10.
Transition Metal Chemistry - Bis(benzotriazol-1-yl)phenylmethane CHPh(btz)2 and tris(benzotriazol-1-yl)methane CH(btz)3 were used as N-donor ligands to prepare luminescent heteroleptic copper(I)...  相似文献   

11.
The reaction of RAuL (R = 2,4,6-C6F3H2, 3,6-C6F2H3, 4-C6FH4 or 3-CF3C6H4; L = PPh3 or AsPh3) or RAudpeAuR with inorganic acids HA (A = ClO4, BF4 or PF6) leads to binuclear complexes of the types [R(AuL)2]A or [R(Au2dpe)]BF4. Similarly, reaction of NBu4[Au(2,4,6-C6F3H2)2] with HPF6 yields the tetranuclear complex Au4(2,4,6-C6F3H2)4. Addition of RAuL to solutions obtained by treating ClAuL with AgA also gives compounds of the type [R(AuL)2]A.  相似文献   

12.
High-yield synthesis of gold(I) thionato complexes, bis(pyridine-2-thionato)gold(I) chloride (1) and bis(pyridine-4-thionato)gold(I) chloride (2), are described. According to their solid-state structures, a linear coordination of Au(I), equiplanar coordination of the ligands and two weak gamma-agostic interactions are found in both of these complexes despite of different relative positions of N and S atoms in the pyridinethionato ligands. Density functional theory calculations on 1 and 2 reproduce the observed X-ray structures. Even though the C-H...Au interactions of Au(I) and two pyridine moieties (2.83 and 2.88 A in 1 and 2.86 A in 2) are relatively weak, according to calculations they seem to provide further stabilization for the coordination and orientation of the ligands. In 1 the shortest Au...Au distances of 3.50 A indicate that aurophilic interactions, even though weak, are present in the solid state, whereas in 2 these interactions are absent.  相似文献   

13.
Li CK  Lu XX  Wong KM  Chan CL  Zhu N  Yam VW 《Inorganic chemistry》2004,43(23):7421-7430
A series of luminescent dinuclear gold(I) complexes with different crown ether pendants, [Au(2)(PwedgeP)(S-B15C5)(2)] [S-B15C5 = 4'-mercaptobenzo-15-crown-5, P(wedge)P = bis(dicyclohexylphosphino)methane (dcpm) (1), bis(diphenylphosphino)methane (dppm) (2)] and [Au(2)(P(wedge)P)(S-B18C6)(2)] [S-B18C6 = 4'-mercaptobenzo-18-crown-6, P(wedge)P = dcpm (3), dppm (4)], and their related crown-free complexes, [Au(2)(P(wedge)P)(SC(6)H(3)(OMe)(2)-3,4)(2)] [P(wedge)P = dcpm (5), dppm (6)], were synthesized. The low-energy emission of the mercaptocrown ether-containing gold(I) complexes are tentatively assigned as originated from states derived from a S --> Au ligand-to-metal charge transfer (LMCT) transition. The crown ether-containing gold(I) complexes showed specific binding abilities toward various metal cations according to the ring size of the crown pendants. Spectroscopic evidence was provided for the metal-ion-induced switching on of the gold...gold interactions upon the binding of particular metal ions in a sandwich binding mode.  相似文献   

14.
Crystals of {(Me(2)PhP)AuX}(n) (Me = methyl; Ph = phenyl; X = Cl, Br, I; n = 2, 3) show emission from two excited states. Both states are assigned a triplet multiplicity, on the basis of their lifetimes and zero-field splittings. The structured, higher energy emission originates at approximately 360 nm and has the greater relative intensity at low temperatures. It is assigned as intraligand phosphorescence from a phenyl-localized (3)pipi state. The unstructured, lower energy emission has a peak wavelength that varies in the range 630-730 nm. It is assigned as phosphorescence from the triplet state due to the gold-based sigma(p) <-- sigma(s,d) excitation. The corresponding singlet state is observed at 290-310 nm. The results of SCF-Xalpha-SW calculations on the model complexes H(3)PAuX and (H(3)PAuX)(2) are also presented.  相似文献   

15.
Summary Novel mixed-ligand complexes of Ag1 and Au1 containing triphenylphosphine (TPP) and heterocyclic thiones, of general formula [TPP–M–L]Cl and [(TPP)2–M–L]Cl, where L=imidazolidine-2-thione (Imt), 1,3-diazinine-2-thione (Diaz) or N-isopropylimidazolidine-2-thione (iPrImt) have been prepared. The spectroscopic data are consistent with S-donation in all complexes. The magnitude of high-field shift in carbon-13 n.m.r. of the thioureide carbon on complexation is interpreted in terms of coordination geometry around the metal atoms. The mixed-ligand complexes are structurally similar to some of the commonly used antiarthritic Au1 drugs and are thus potentially useful in chemotherapy.  相似文献   

16.
《中国化学快报》2021,32(12):3718-3732
Photophysical properties of organic and organometallic luminophors are closely related with their molecular packings, enabling the exploitation of stimuli-responsive functional luminescent molecules. Mechanochromic molecules, which can change their luminescence characteristics after mechanical stimulus, have received an increasing interest due to their promising applications in multifunctional sensors and molecular switches. During the past two decades, the development of gold(I) chemistry has been attracting the attention of plenty of researchers. Indeed, a variety of gold(I) complexes with fascinating photophysical behaviors have been discovered. This review focuses on the research progress in the different types of mechanoluminochromic gold(I) complexes, including mono-, bi- and multi-nuclear gold(I) systems. Their interesting luminescence behaviors of these gold(I)-containing luminogens upon mechanical stimulus and the proposed mechanisms of their observed mechanochromic luminescence are summarized systematacially. Moreover, this review will put forward an outlook about the possible opportunities and challenges in this significative scientific field.  相似文献   

17.
Potassium N-isopropyl-2-(isopropylamino)troponiminate, K{(iPr)2ATI}, and potassium N-cyclohexyl-2-(cyclohexylamino)troponiminate, K{(Cy)2ATI}, were synthesized by treatment of the neutral ligands with an excess of KH in THF. Reaction of the potassium reagents with [AuClPPh3] resulted in the gold complexes [Au{(iPr)2ATI}PPh3] and [Au{(Cy)2ATI}PPh3]. The solid-state structures of both compounds, in which the ligands are arranged in plane, show distorted trigonal planar coordinated gold atoms. Potassium 2-(isopropylamino)troponate (K(iPrAT)) and the cyclohexyl analogue (K(CyAT)) were obtained by deprotonation of corresponding aminotropones with KH. In an analogous fashion the gold complexes of composition [Au(iPrAT)PPh3] and [Au(CyAT)PPh3] were prepared by reaction of K(iPrAT) and K(CyAT) with [AuClPPh3], respectively.  相似文献   

18.
A series of alkynethiolate gold(I) derivatives have been synthesised by the cleavage of 4-monosubstituted 1,2,3-thiadiazoles in the presence of strong bases. The syntheses of the 1.2,3-thiadiazoles with p-cyanophenyl, p-tolyl, 2-thienyl, 3-thienyl and 9,9-dimethylfluoren-2-yl fragments are also described. All the complexes have been characterised by spectroscopic techniques and the complexes [Au(p-CH3-C6H4-C[triple bond]C-S)PPh3], [Au(3-C4H3S-C[triple bond]C-S)PPh3] and PPN[Au(p-CH3-C6H4-C[triple bond]C-S)(C6F5)] by X-ray analysis. The electrochemically polymerizable mononuclear bis(alkynethiolate) gold(I) complex PPN[Au(3-C4H3S-C[triple bond]C-S)2] is also described, including its electropolymerization and electrochemical properties.  相似文献   

19.
The crystal structures of two salts of bis­(thio­urea)­gold(I) complexes, namely bis­(thio­urea‐κS)­gold(I) chloride, [Au(CH4N2S)2]Cl, (I), and bis­[bis­(thio­urea‐κS)­gold(I)] sulfate, [Au(CH4N2S)2]2SO4, (II), have been determined. The chloride salt, (I), is isomorphous with the corresponding bromide salt, although there are differences in the bonding. The AuI ion is located on an inversion centre and coordinated by two symmetry‐related thio­urea ligands through the lone pairs on their S atoms [Au—S 2.278 (2) Å and Au—S—C 105.3 (2)°]. The sulfate salt, (II), crystallizes with four independent [Au(CH4N2S)2]+ cations per asymmetric unit, all with nearly linear S—Au—S bonding. The cations in (II) have similar conformations to that found for (I). The Au—S distances range from 2.276 (3) to 2.287 (3) Å and the Au—S—C angles from 173.5 (1) to 177.7 (1)°. These data are relevant in interpreting different electrochemical processes where gold–thio­urea species are formed.  相似文献   

20.
Gold-isocyanide complexes XAu(RNC) (X = halide, pseudohalide, R = alkyl, aryl) and water soluble gold-carbene complexes XAuC(NHPh)[MeN(CH(2)CH(2)O)(n)Me] (X = Cl, n = 1-11) have been prepared and evaluated as substrates for the direct laser writing of gold decoration onto ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号