首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the thermal fracture problem of a functionally graded coating-substrate structure of finite thickness with a partially insulated interface crack subjected to thermal-mechanical supply. A new model is proposed that the heat conduction through the crack region occurs and the temperature drop across the crack surfaces is the result of the thermal resistance. For the first time, real fundamental solutions are derived for the fracture analysis of functionally graded materials. The complicated mixed boundary problems of equations of heat conduction and elasticity are converted analytically into singular integral equations, which are solved numerically. The asymptotic expressions with higher order terms for the singular integral kernels are considered to improve the accuracy and efficiency of the numerical integration. Explicit expressions of various failure modes including stress intensity factors, energy release rate and strain energy density, are provided. Numerical results are presented to illustrate the effects of non-homogeneity parameters and the dimensionless thermal resistance on the temperature distribution along the crack surfaces and extended crack line, the thermal stress intensity factors and minimum strain energy density.  相似文献   

2.
The near crack line analysis method is used to investigate an eccentric crack loaded by shear forces in a finite width plate, and the analytical solution is obtained in this paper. The solution includes: the unit normal vector of the elastic–plastic boundary near the crack line, the elastic–plastic stress fields near crack line, variations of the length of the plastic zone along the crack line with an external loads, and the bearing capacity of a finite plate with a centric crack loaded by shear stress in the far field. The results obtained in this paper are sufficiently precise near the crack line because the assumptions of small scale yielding theory have not been made and no other assumptions have been taken. Subsequently, the present results are compared with the traditional line elastic fracture mechanical solutions and elastoplastic near field solutions under small scale yielding condition. On the basis of the minimum strain energy density (SED) theory, the minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. It is found that the normalized load under large scale yielding condition is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

3.
Linear elastic criterion of the inclined semi-elliptical crack growth direction is elaborated on the basis of the strain energy density theory. Stress and displacement fields are presented for higher order terms asymptotic expansion. Solutions for elastic stress intensity factors are accounting for the function describing of the crack tip fields near the free surface of plate. The mixed mode behavior of crack growth direction angle along the semi-elliptical crack front for different combination of biaxial loading, inclination crack angle and surface flaw geometry is determined.  相似文献   

4.
At high crack velocities in metallic materials nearly all plastic strain accumulates at very high strain-rates, typically in the range 103 s?1 to 105 s?1. At these rates, dislocation motion is limited by dynamic lattice effects and the plastic strain-rate increases approximately linearly with stress. The problem for a crack growing at high velocity is posed for steady-state, small scale yielding in elastic/rate-dependent plastic solids. A general expression is derived for the near-tip stress intensity factor in terms of the remote intensity factor, or equivalently for the near-tip energy release-rate in terms of the overall release-rate. An approximate calculation of the plastic strain-rates provides this relation in analytical form. Imposition of the condition that the near-tip energy release-rate be maintained at a critical value provides a propagation equation for the growing crack. A single, nondimensional combination of material constants emerges as the controlling parameter. Implications for dynamic crack propagation are discussed.  相似文献   

5.
The failure behavior of an elastic-perfectly plastic body with a crack loaded by two pairs of concentrated shear forces is discussed. The analytical solutions of an eccentric crack in a finite plate loaded by two pairs of point shear forces are obtained. It includes the unit normal vector of the elastic-plastic boundary near the crack line, the elastic-plastic stress fields near crack line and the law of the plastic zone along the crack line with external loads. The solutions of this paper are sufficiently precise near the crack line in elastic-perfectly plastic materials. Subsequently, the present results are compared with solutions based on the minimum strain energy density theory and elastic-plastic solutions under small scale yielding condition. On the basis of the minimum strain energy density (SED) theory, the minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. It is found that the normalized load under large scale yielding condition is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

6.
The problem of a crack growing steadily and quasi-statically along a brittle\ductile interface under plane strain, mixed mode, and small scale yielding conditions is considered. The ductile material is assumed to be characterized by the J2-flow theory of plasticity with linear strain hardening, while the brittle material is assumed to be linear elastic. A displacement-based finite element method, exploiting the convective nature of the problem, is utilized to solve the relevant boundary value problem. In Part I of this work, the corresponding asymptotic problem was solved. This paper addresses the full-field problem in order to validate the asymptotic solutions, and to explore the physical implications of the results. The numerical full-field results are found to be in good agreement with the analytical asymptotic solutions. In particular, the full-field results strongly suggest that the stress fields in the vicinity of the crack tip are variable-separable of the power singular type; and also that the mode mix of the near-tip stress fields is, to a large extent, independent of the applied elastic mode mix. The amplitude (the plastic stress intensity factor) and the regions of validity of the asymptotic fields are estimated from the full-field results, and are observed to be strongly dependent on the applied mode mix. The remote elastic loading fields appear to influence the near-tip fields, primarily, through the plastic stress intensity factor. The present work also explores the suggestion made by Bose and Ponte Castaneda, 1992 that the solutions to the small scale yielding problem may be used in the context of a standard crack growth criterion, requiring that continued growth take place with a fixed near-tip crack opening profile, to obtain theoretical predictions for the dependence of interfacial toughness on the applied mode mix. Based on the numerical results, predictions for mixed mode toughness of the brittle\ductile interface are reported. The results, which are in qualitative agreement with available experimental data and also with some recent theoretical results, predict a strong dependence of interfacial toughness on mode mix. This suggests that ductility provides the main operating mechanism for explaining the dependence of interfacial toughness on the mode mix of the applied loading fields, during steady crack growth.  相似文献   

7.
8.
The elastic–plastic stress fields and mode mixity parameters for semi-elliptical surface cracks on biaxial loaded plates have been investigated using detailed three-dimensional finite element calculations. Different degrees of mode mixity are given by combinations of the far-field stress level, biaxial stress ratio and inclined crack angle. These analyses were performed for different surface flaw geometries to study the combined load biaxiality and mode mixity effects on the crack-front stress fields and the size and shape of the plastic zones. It is clear from considering the local stress distributions along the crack front that the elastic crack tip singularities have been derived for several particular cases of mixed mode biaxial loading. By theoretical analysis, the new formulae have been introduced for both the elastic and plastic mode-mixity parameters, accounting for ratios between the I/II, II/III and III/I modes. Particular attention was paid to the strong variations of the mode-mixity parameters along the semi-elliptical surface crack front. The mixed-mode behavior of the crack growth direction angle along the semi-elliptical crack front for different combinations of biaxial loading and inclination crack angles was also determined. It was done using methods based on the maximum tangential stress and the strain energy density criteria.  相似文献   

9.
根据线弹性断裂力学理论,V形切口处的应力场具有奇异性,应力值趋于无穷大,峰值应力不能直接用于评定疲劳强度。通过引入了奇异强度因子“as”,单边缺口应力分布和缺口应力强度因子(N-SIF)的半解析公式被推导。考虑张开角和几何尺寸等因素,基于奇异强度因子拟合得到了切口应力评估的简易公式,可用于切口应力场和N-SIF值的快速评估。将简易公式评估结果与有限元结果以及传统文献结果进行对比分析,结果表明,本文简易公式可以准确地预报拉伸载荷下单边V型切口角平分线上的应力场和N-SIF值,实现了切口试样应力场的快速评估。  相似文献   

10.
The computation of stress intensity factors in dissimilar materials   总被引:3,自引:0,他引:3  
A reciprocal work contour integral method for calculating stress intensity factors is extended to treat the problem of two bonded dissimilar materials containing a crack along the bond. The method is based on Betti's Reciprocal work theorem from which the singular stress intensities at the crack tip may be evaluated in terms of an integral involving tractions and displacements on a contour remote from the crack tip.  相似文献   

11.
A new three-dimensional variable-order singular boundary element has been constructed for stress analysis of three-dimensional interface cracks and internal material junctions. The singular fields in the vicinity of crack front or junction have been accurately represented by the singular elements by taking account the variable order of singularities and the angular profiles of field variables. Both the singular stress fields and displacement fields are independently formulated by the element’s shape functions. Different kinds of displacement formulations are investigated. The formulation combining singular and linear terms is found to be the most accurate one. The mixed-mode stress intensity factors are treated as nodal unknowns. The variation of stress intensity factors along the line of singularity can be obtained directly from the final system of equations and thus no post processing, such as three-dimensional J-integral or domain integral, is necessary. Numerical examples involving stress singularity, such as penny-shaped cracks in homogeneous and dissimilar material interface, plates with through-thickness cracks, and a dissimilar inclusion, are investigated. The analysis results are in good agreement with those reported in the literature.  相似文献   

12.
朱先奎  黄克智 《力学学报》1996,28(5):603-608
研究了平面应变条件下幂硬化可压缩材料中定常扩展的Ⅰ型动态裂纹尖端应力应变奇异场.采用J2流动理论和场量直角坐标分量,得到了应力应变奇异性不同时的裂纹尖端渐近场,其中场量的角变化规律和理想弹塑性材料的完全相同  相似文献   

13.
研究了平面应变条件下幂硬化可压缩材料中定常扩展的Ⅰ型动态裂纹尖端应力应变奇异场.采用J2流动理论和场量直角坐标分量,得到了应力应变奇异性不同时的裂纹尖端渐近场,其中场量的角变化规律和理想弹塑性材料的完全相同  相似文献   

14.
In this study, the dynamic response of a coated piezoelectric strip containing a crack vertical to the interfaces under normal impact load is considered. Based on the superposition principle and the integral transform techniques, the solution in the Laplace transformed plane is obtained in terms of a singular integral equation. The order of stress singularity around the tip of the terminated crack is also obtained. The singular integral equation is solved by using the Gauss–Jacobi integration formula, and the numerical Laplace inversion is then carried out to obtain the resulting dynamic stress and electric displacement intensities. The effects of the material properties and the geometric parameters on the dynamic stress intensity factor and the dynamic energy density factors are shown graphically.  相似文献   

15.
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios. The project supported by the National Natural Science Foundation of China  相似文献   

16.
A mode III crack with a cohesive zone in a power-law hardening material is studied under small scale yielding conditions. The cohesive law follows a softening path with the peak traction at the start of separation process. The stress and strain fields in the plastic zone, and the cohesive traction and separation displacement in the cohesive zone are obtained. The results show that for a modest hardening material (with a hardening exponent N = 0.3), the stress distribution in a large portion of the plastic zone is significantly altered with the introduction of the cohesive zone if the peak cohesive traction is less than two times yield stress, which implies the disparity in terms of the fracture prediction between the classical approach of elastic–plastic fracture mechanics and the cohesive zone approach. The stress distributions with and without the cohesive zone converge when the peak cohesive traction becomes infinitely large. A qualitative study on the equivalency between the cohesive zone approach and the classical linear elastic fracture mechanics indicates that smaller cracks require a higher peak cohesive traction than that for longer cracks if similar fracture initiations are to be predicted by the two approaches.  相似文献   

17.
Deformation and strength behavior of geomaterials in the pre- and post-failure regimes are of significant interest in various geomechanics applications. To address the need for development of a realistic constitutive framework, which allows for an accurate simulation of pre-failure response as well as an objective and meaningful post-failure response, a strain gradient plasticity model is formulated by incorporating the spatial gradients of elastic strain in the evolution of stress and gradients of plastic strain in the evolution of the internal variables. In turn, gradients of only kinematic variables are included in the constitutive equations. The resulting constitutive equations along with the balance of linear momentum for the continuum are cast as a coupled system of equations, with displacements and plastic multiplier appearing as the primary unknowns in the final governing integral equations. To avoid singular stress fields along element boundaries, a finite element discretization of the governing equations would require C2 continuous displacements and C1 continuous plastic multiplier, which is undesirable from a numerical implementation point of view. This issue is naturally resolved when a meshfree discretization is used. Hence the developed model is formulated within the framework of a meshfree environment. The new constitutive model allows an analysis of grain size effects on strength and dilatancy of rocks. The role and effectiveness of the new gradient terms on regularizing the underlying boundary value problems of geomechanics beyond the initiation of strain localization will be assessed in a future paper.  相似文献   

18.
In this paper, based on the three-dimensional flow theory of plasticity, the fundametal equations for plane strain problem of elastic-perfectly plastic solids are presented. By using these equations the elastic-plastic fields near the crack tip growing step-by-step in an elastic incompressible-perfectly plastic solid are analysed.The first order asymptotic solutions for the stress field and velocity fields near the crack tip are obtained. The solutions show the evolution process of elastic unloading domain and the development process of central fan domain and reveal the possibility of the presence of the secondary plastic domain. The second order asymptotic solution for stress field is also presented.  相似文献   

19.
与两相材料界面接触的裂纹对SH波的散射   总被引:1,自引:0,他引:1  
陆建飞  汪越胜  蔡兰 《力学学报》2003,35(4):432-436
利用积分变换方法得出了两相材料中作用简谐集中力时的格林函数.根据所得的格林函数并利用Betti-Rayleigh互易定理得出了与界面接触裂纹的散射波场.裂纹的散射波场可分解为两部分,一部分为奇异的散射场,另一部分为有界的散射场.利用分解后的散射场,可得裂纹在SH波作用下的超奇异积分方程.根据裂纹散射场的奇异部分和Cauchy型奇异积分的性质得出了裂纹和界面接触点处的奇性应力指数和接触点角形域内的奇性应力.利用所得的奇性应力定义了裂纹和界面接触点处的动应力强度因子.对所得超奇异积分方程的数值求解可得裂纹端点和接解点处的应力强度因子。  相似文献   

20.
Crack-tip stress fields for a stationary crack along or inclined to the direction of property gradation in functionally graded materials (FGMs) are obtained through an asymptotic analysis coupled with Westergaard’s stress function approach. The elastic modulus of the FGM is assumed to vary linearly along the gradation direction. The first six terms for a crack along the direction of property variation and first four terms for a crack inclined to the direction of property variation in the expansion of the stress field are derived to explicitly bring out the influence of nonhomogeneity on the structure of the stress field. Using these stress fields, contours of constant maximum shear stress and constant out of plane displacement are generated and the effect of inclination of property gradation direction on these contours is discussed. The strain energy density criterion is applied to obtain critical conditions for crack initiation and the effect of property gradation is discussed. It is shown that the materials with varying properties can offer more resistance to crack propagation and will suppress crack growth in some situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号