首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we present studies of ultra-thin polycrystalline silicon layers (5–100 nm) prepared by the aluminum-induced layer exchange process. Here, a substrate/Al/oxide/amorphous Si layer stack is annealed at temperatures below the eutectic temperature of the Al/Si system of 577 °C, leading to a layer exchange and the crystallization of the amorphous Si. We have studied the process dynamics and grain growth, as well as structural properties of the obtained polycrystalline Si thin films. Furthermore, we derive a theoretical estimate of the grain density and examine characteristic thermal activation energies of the process. The structural properties have been investigated by Raman spectroscopy. A good crystalline quality down to a layer thickness of 10 nm has been observed.  相似文献   

2.
CuAlO2 films were sputtered on quartz substrates at different oxygen partial pressures (OPP) and carried out the annealing at 900 °C for 5 h in N2 ambient. The structural properties of these films have been studied in detail by X-ray diffraction, Raman spectroscopy, and atomic force microscopy. Annealed CuAlO2 films are grown along the (0 0 1) preferential orientation. The film deposited at 20% OPP demonstrates the excellent crystalline behavior and the smallest electrical resistivity (41.8 Ω cm). At higher OPP, the crystalline behavior begins to degenerate up to the amorphous state at 60% OPP, and some micro-caves presented in the film surface become larger and deeper with the increase in OPP. We believe that the negative thermal expansion behavior associated with excess oxygen atoms is the primary responsibility for the change in structural properties.  相似文献   

3.
Anatase TiO2 nanoparticles were successfully synthesized by post-heat treatments of partially crystalline Ti and amorphous TiOx nanoparticles, respectively produced by inert gas condensation and subsequent oxidation. The nanoparticles condensed on a liquid-nitrogen containing cooling finger (sample LN) were identified to be partially crystalline Ti phase with ~ 10–20 vol.% amorphous TiOx. On the other hand, those condensed on a room-temperature cooling finger (sample RT) were almost completely amorphous TiOx phase. Differential scanning calorimetry scan curves of as-oxidized samples were interpreted using Kissinger analysis, the non-isothermal kinetics, and activation energy for the anatase formation was determined as ~ 455 and 865 kJ/mol for samples LN and RT, respectively. As-oxidized samples LN and RT were heat treated at 400 °C for 2 h, respectively (samples LN-H and RT-H). Samples LN-H and RT-H showed the onset of UV–visible light absorption near 400 nm and the optical band gap of 3.12 and 3.21 eV, respectively, corresponding to anatase. The sample LN-H showed faster photocatalytic decomposition of methylene blue and rhodamine B dyes compared to the sample RT-H due to high crystallinity of anatase and rutile phases.  相似文献   

4.
We describe two successful routes for generating ordered arrays of Si nanocrystals by using atomic force microscopy (AFM) and amorphous silicon thin films (200–400 nm) on Ti/Ni coated glass substrates. First, we show that field-enhanced metal-induced solid phase crystallization at room temperature can be miniaturized to achieve highly spatially localized (below 100 nm) current-induced crystallization of the amorphous silicon films using a sharp tip in AFM. In the second route, resistive nano-pits are formed at controlled positions in the amorphous silicon thin films by adjusting (lowering and/or stabilizing) the exposure currents in the AFM process. Such templated substrates are further used to induce localized growth of Si nanocrystals in plasma-enhanced chemical vapor deposition process. In both cases the crystalline phase is identified in situ as features of enhanced current in current-sensing AFM maps.  相似文献   

5.
Two different growth mechanisms are compared for the fabrication of Si/SiO2 nanostructures on crystalline silicon (c-Si) to be used as hetero-emitter in high-efficiency solar cells: (1) The decomposition of substoichiometric amorphous SiOx (a-SiOx) films with 0 < x < 1.3 and (2) the dewetting of thin amorphous silicon (a-Si) layers.The grown layers are investigated with regard to their structural properties, their passivation quality for c-Si wafer substrates and their electrical properties in order to evaluate their suitability as a nanodot hetero-emitter. While by layer decomposition, no passivating nanodots could be formed, the dewetting process allows fabricating nanodot passivation layers at temperatures as low as 600 °C. The series resistance through Ag/[Si-nanodots in SiO2]/c-Si/Al structures for dewetting is similar to nanostructured silicon rich SiOx films. Still, a nanodot hetero-emitter which exhibits both a satisfying passivation of the substrate and induces a high band bending by doping at the same time could not be fabricated yet.  相似文献   

6.
Thermal stability and changes of both the average size of Al nanocrystals and their crystallised volume fraction formed in a series of the amorphous Al–(Ni,Co,Fe)–(Gd,Y,Tb) alloys as well as of α-Fe(Si) in the Fe73.5Si13.5B9Cu1Nb3 alloy under isothermal conditions have been experimentally studied by a combination of X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC) and electrical resistance measurements. The experimental data have been fitted with the analytical models describing the diffusion-limited growth of nanocrystals and nanocrystallisation kinetics accounting for impingement of diffusion fields and the values of the effective diffusivity governing this process have been estimated. The obtained values of the diffusivity in Al-based amorphous alloys follow the Arrhenius-type dependencies with correlation between the pre-exponential factors and the activation energies somewhat different from that found for impurity diffusion coefficients in amorphous alloys. It has been established that at the onset crystallisation temperatures varying from 453 to 778 K, the values of the effective diffusivity in the investigated amorphous alloys are in the narrow range of 1.7–4.7 × 10? 20 m2 s? 1, which indicates a crucial role of the effective diffusivity for the thermal stability of nanocrystals forming amorphous alloys and the possible reason for this is discussed.  相似文献   

7.
This paper presents a study on the thermal properties of a range of geopolymers in order to assess their suitability for high temperature applications such as thermal barriers, refractories and fire resistant structural members. Geopolymers were synthesised from five different fly ashes using sodium silicate and sodium aluminate solutions to achieve a set range of Si:Al compositional ratios. The thermo-physical, mechanical and microstructural properties of the geopolymers are presented and the effect of the source fly ash characteristics on the hardened product is discussed, as well as implications for high temperature applications. The amount and composition of the amorphous component (glass) of each of the fly ashes was determined by combining XRD and XRF results. It was found that the Si:Al ratio in the glass of the fly ashes strongly influenced the thermal performance of the geopolymers. Geopolymers synthesised from fly ashes with a high Si:Al (≥ 5) in the glass exhibited compressive strength gains and greater dimensional stability upon exposure to 1000 °C, whereas geopolymers synthesised from fly ashes with low Si:Al (< 2) in the glass exhibited strength losses and reduced dimensional stability upon high temperature exposure.  相似文献   

8.
Li+ ion conducting Li–Al–Ti–P–O thin films were fabricated on ITO-glass substrates at various temperatures from 25 to 400 °C by RF magnetron sputtering method. When the substrate temperature is higher than 300 °C, severe destruction of ITO films were confirmed by XRD (X-ray diffraction) and the abrupt transformation of one semi-circle into two semi-circles on the impedance spectra. These as-deposited Li–Al–Ti–P–O solid state electrolyte thin films have an amorphous structure confirmed by XRD and a single semicircle on the impedance spectra. Good transmission higher than 80% in the visible light range of these electrolyte thin films can fulfill the demand of electro-chromic devices. Field emission scanning electron microscopy and atomic force microscopy showed the denser, smoother and more uniform film structure with the enhanced substrate temperature. Measurements of impedance spectra indicate that the gradual increased conductivity of these Li–Al–Ti–P–O thin films with the elevation of substrate temperature from room temperature to 300 °C is originated from the increase of the pre-exponential factor (σ0). The largest Li-ion conductivity can come to 2.46 × 10? 5 S cm? 1. This inorganic solid lithium ion conductor film will have a potential application as an electrolyte layer in the field such as lithium batteries or all-solid-state EC devices.  相似文献   

9.
The experiments were carried out on studying the effect of phase separation on nucleation and crystallization in the glass based on the system of CaO–MgO–Al2O3–SiO2–Na2O. In the experiments, TiO2 was chosen as nucleating agent. Three batches of 5, 8 and 10 wt% TiO2 substitution were investigated by the techniques of DSC, XRD, FTIR and FESEM equipped with EDS. XRD and FTIR analysis indicated that the super cooled glasses were all amorphous, the heat treatment leading to nucleation would cause a disruption of silica network which followed phase separation. The phase separation followed the generation of crystal seeds Mg(Ti, Al)2O6. FESEM observation and EDS analysis revealed that the more TiO2 content of glass, the more droplet separated phase and crystal seeds after nucleation heat treatment. The main crystal phase is clinopyroxene, Ca(Ti, Mg, Al)(Al, Si)O6, of crystallized glass.  相似文献   

10.
《Journal of Non》2007,353(32-40):3434-3438
A structural state of the Zr–Cu–Ni–Al melt-spun ribbons has been investigated by means of X-ray diffraction analysis. It was established that conditions of ribbon production have a very strong effect on their structural state. The Zr69.3Cu9.7Ni15.1Al5.9 ribbons produced at the surface wheel velocity of 44 m/s have an amorphous state at the contact side and mixed amorphous–quasicrystalline state at the free side. At the same time the Zr67.5Cu12.5Ni12Al8 ribbons are fully amorphous in case of producing velocity of 44 m/s and have only small features of quasicrystalline peaks on the amorphous halo on the free side in case of producing velocity of 30 m/s in contrast to an amorphous structure on the contact side. The uncoated by Pd amorphous and amorphous–quasicrystalline Zr–Cu–Ni–Al ribbons have a property of absorbing a large amount of hydrogen. Parameters of the amorphous state were calculated for the ribbons as-prepared and hydrogenated. The temperature coefficient of resistivity for all ribbons is negative in range of 20–380 °C, what as well as the high resistivity values is typical to the Zr–Cu–Ni–Al based systems in amorphous and quasicrystalline states.  相似文献   

11.
Crystallization behaviors of Al–Ni–La amorphous alloys with a fixed Ni (La) content of 6 at.% were investigated by X-ray diffraction and differential scanning calorimeter when the La (Ni) content changes from 3 to 9 at.%. The results show that the thermal stability of the amorphous alloys monotonically increases with increasing the La (Ni) content. Glass transition only exists in the alloys with the La (Ni) content higher than 6 at.%. La plays a more significant role than Ni in promoting the glass-forming ability, improving the thermal stability, stabilizing the supercooled liquid region, depressing the precipitation of fcc-Al in the first crystallization process and increasing the apparent activation energy of the first reaction.  相似文献   

12.
Silicon nanocrystals (Si-NCs) with different sizes embedded in SiO2 matrix were synthesized by phase separation and thermal crystallization of SiOx/SiO2 supperlattice approach. The optical constants and band gap expansion of Si-NCs have been investigated by spectroscopic ellipsometry, based on the Maxwell–Garnett effective medium approximation and the Forouhi–Bloomer optical dispersion model. Similar spectra shapes but smaller values of Si-NCs optical constants with respect to bulk crystalline Si is observed. With the size of Si-NCs decreasing from 6 nm to 2 nm, the band gap increases from 1.64 eV to 2.56 eV. The band gap expansion, as compared to bulk crystalline Si, which agrees with the prediction of first-principles calculations based on quantum confinement effect, is presented in this paper.  相似文献   

13.
《Journal of Non》2005,351(43-45):3483-3489
Glasses in the system BaO/Al2O3/B2O3 with and without the addition of platinum were melted. In one sample series, the BaO-concentration was varied while the ratio [Al2O3]/[B2O3] was kept constant. In another sample series, the [BaO]/[Al2O3]-ratio (= 0.9) was kept constant and the B2O3 concentration was varied. The samples were thermally treated at 720 °C for 24 h and subsequently at 780 °C for 4 h. In most thermally treated samples, the crystalline phase BaO · Al2O3 · B2O3 occurred. At some compositions, the platinum-doped samples showed larger concentrations of the crystalline phases. The most remarkable property of the obtained glass–ceramics is their zero or negative thermal expansion coefficient. Here, notable differences were observed: samples with fine grained microstructures showed thermal expansion coefficients approximately zero up to temperatures of around 80 °C. By contrast, samples with coarser microstructures and large spheroidal crystals exhibit negative expansion coefficients up to temperatures of around 280–375 °C. The thermal expansions of these samples were close to those of the mean thermal expansion of the unit cell of the BaO · Al2O3 · B2O3 phase. The thermal expansion of the fine grained samples was approximately equal to that of the crystallographic a-axis of the BaO · Al2O3 · B2O3 phase.  相似文献   

14.
《Journal of Non》2007,353(52-54):4723-4731
The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5 at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx = Tx Tg) of up to 40 °C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.  相似文献   

15.
《Journal of Non》2006,352(9-20):989-992
The rapid recrystallization of amorphous silicon utilizing the very high frequency (VHF) plasma jet of argon at atmospheric pressure is presented. Highly crystallized polycrystalline Si film was synthesized by optimizing the translating velocity of the substrate stage and flow rate of argon. The temperature of the plasma exposure area reached at 1300 °C and the recrystallization of a-Si proceeded with a time constant of 10–50 ms. The effects of the translating velocity of the substrate stage and flow rate of argon on the rapid recrystallization of a-Si are demonstrated along with its mechanism.  相似文献   

16.
《Journal of Non》2006,352(36-37):3929-3935
The structure and properties of amorphous materials, in general, change with their thermal history. This is usually explained using the concept of fictive temperature, i.e., the temperature at which the super-cooled liquid state turned into a glassy state. In earlier studies, a simple IR method was used to determine the fictive temperature of silica glasses, both bulk and fiber. In the present study the applicability of the same technique for thin amorphous silica films on silicon was examined. It was found that the IR absorption as well as reflection peak wavenumber of the silica structural band can be used to determine the fictive temperature of amorphous silica films on silicon with an unknown thermal history. Specifically, IR absorbance spectra of an amorphous silica film of thickness greater than 0.5 μm grown on silicon can be taken before and after etching a thin surface layer of 20–30 nm and the peak wavenumber of the difference signal can be compared with the pre-determined calibration curve to convert the peak wavenumber to the fictive temperature. For a film thicker than ∼2 μm, IR reflection peak wavenumber can be converted directly to the fictive temperature of the film by using the calibration curve.  相似文献   

17.
《Journal of Non》2007,353(44-46):4227-4231
The connectivities between Al and P through chemical bond and internuclear distance have been studied for an amorphous aluminophosphate (a-AlPO4) using two-dimensional (2D) solid-state 27Al–31P correlation NMR (MAS J-HMQC and CP HETCOR). Whereas the conventional 31P MAS spectrum provides less informative results because of poor resolution caused by large distributions of the nucleus surroundings, the 2D HETCOR shows much better resolution and at least four non-equivalent P sites in the a-AlPO4. These P sites are found to be correlated with one [4]Al, two [5]Al and one [6]Al species, and have different chemical shifts. This result might indicate that the mean P–O–[n]Al (n = 4, 5, 6) bond angles are different each other, and they are estimated using the relationship with the 31P chemical shifts in crystalline AlPO4 previously reported.  相似文献   

18.
《Journal of Non》2007,353(13-15):1388-1391
Ge15As15Se70−xTex materials with x = 56, 60 and 63, of potential use in IR-integrated optics, were prepared by the classical melt-quenching method. A macroscopic phase separation was observed with a crystalline phase on the top and an amorphous one at the bottom. The glasses from the bottom were transparent from 1.9 to 16 μm without any purification of the elemental precursors Ge, As, Te and Se. The higher the Te/Se content in the glasses the lower their glass transition temperature and thermal stability. Films 7–12 μm thick of the above stated compositions were deposited by thermal evaporation. The higher the tellurium content, the larger the optical band gap shift of the films in the infra-red and the higher the refractive index.  相似文献   

19.
Y.C. Lei  W. Cai  X. An  L.X. Gao 《Journal of Non》2008,354(40-41):4572-4576
The crystallization kinetics of amorphous thin TiNi films deposited on SiO2 (or NaCl)/Al foils substrates were investigated. A dramatic acceleration of the crystallization rate was observed for amorphous attached-substrate films. The acceleration originated from the presence of the thin film/middle-wafer interface which served as a two-dimensional nucleus for the growth of the crystalline phase. In the process of non-isothermal annealing by DSC, apparent activation energies for two kinds of underlying thin TiNi films were determined to be 352.96 and 403.69 kJ/mol, respectively, which was lower than those free-standing films studied in previous works. For the process of isothermal annealing, the crystallization kinetics parameters had remarked drop, reflected from the lower Avrami exponent n (the range of 1.35–2.11) and shorter incubation time τ (the range of 0.1–0.4 min) between 758 and 775 K.  相似文献   

20.
《Journal of Non》2006,352(9-20):1093-1096
A photocurrent time-of-flight study of carrier transport in microcrystalline silicon pin diodes prepared over a range of crystallinities is presented. Electron and hole drift mobilities at a crystalline volume fraction >0.35 are typically 3.8 and 1.3 cm2/(V s) respectively at 300 K and a thickness to electric field ratio of 1.8 × 10−7 cm2/V. A factor of five enhancement in hole mobility over amorphous silicon persists at a crystalline volume fraction as low as 0.1. Current decays are dispersive and mobilities are thermally activated, although detailed field-dependence is still under investigation. Evidence for a sharp fall in the density of states at 0.13 eV above the valence band edge is presented. Similarities in behaviour with certain amorphous and polymorphous silicon samples are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号