共查询到20条相似文献,搜索用时 0 毫秒
1.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics. 相似文献
2.
《Journal of Non》1999,243(2-3):251-267
Glasses in a wide range of compositions in the ternary system xLi2SO4–yLi2O–zP2O5 where x ranges from 0 to 30 mol%, y ranges from 35 to 55 mol% and z ranges from 25 to 50 mol% have been prepared and their properties measured using infra-red, Raman, and 31P magic angle spinning nuclear magnetic resonance spectroscopic techniques. We conclude that a random close packing of phosphate and sulphate ions which also leads to formation of connected voids in the structure is consistent with our data. There is also evidence for formation of condensed sulphate–phosphate species in the liquid which may be retained in the glass structure. 相似文献
3.
A. Edukondalu M. Purnima Ch. Srinivasy T. Sripathi A.M. Awasthi Syed Rahman K. Siva Kumar 《Journal of Non》2012,358(18-19):2581-2588
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides. 相似文献
4.
SnO–ZnO–P2O5 glasses with 30 and 40 mol% P2O5 were prepared by a melting process in an air atmosphere. The glass transition temperature, refractive index, and photoluminescence of the glasses were investigated. The electronic states of Sn(II) and Sn(IV) were determined by Mössbauer spectroscopy. The PO4 units were investigated by Raman spectroscopy. The glass transition temperature was lower than 450 °C, and decreased as the Sn concentrations increased, so that the minimum was about 250 °C. The refractive index increased as the Sn concentration increased. The emission spectra of the glasses peaked at around 2.0–3.0 eV and depended on the glass compositions. 相似文献
5.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties. 相似文献
6.
7.
Bulk Fe80?xMoxP10C7.5B2.5 (x = 5–10 at.%) metallic glasses are synthesized by copper mold casting, which have a critical diameter up to 3 mm, fracture strength over 3000 MPa, plastic strain up to 2.5% and saturation magnetization reaching 1.1 T. Results show that the glass forming ability and strength increase with increasing Mo content, while the plasticity and saturation magnetization do otherwise. These Mo content dependent properties are illuminated with the atomic interactions in the alloys that could be strengthened by suitable addition of Mo element. The effects of Mo on the properties of the alloys imply that proper Mo element should be chosen in designing Fe-based glassy alloys with desired properties. 相似文献
8.
A.V. Ravi Kumar Ch. Srinivasa Rao N. Narasimha Rao V. Ravi Kumar I.V. Kityk N. Veeraiah 《Journal of Non》2012,358(10):1278-1286
Sodiumsulpho borophosphate glasses with composition (40 ? x)Na2SO4–30B2O3–30P2O5: xMnO with x ranging from 0 to 5.0 mol% were manufactures. Dielectric spectra have been studied over a wide frequency range of 102–105 Hz and in the temperature range within 30–250 °C. The valance states of manganese ions and their ligand coordination in the glass network have been investigated using optical absorption, luminescence and ESR spectroscopy. The analysis of the these results has indicated that the manganese ions exist both in Mn2+ as well as in Mn3+ states and occupy prevailingly octahedral positions and serve as modifiers similarly to Na+ ions The values of dielectric parameters (dielectric constant, ε′(ω), loss tan δ and ac conductivity, σac) were found to increase with increasing MnO content. They play a role of modifiers similarly to Na+ ions, create bonding defects and free ions viz., [SO4]2?, [POO1/2O2]2?, [POO0/2O3]3–, Na+ and (NaSO4)?. The migration of these charge carriers would build up space charge polarization and may be responsible for the enhanced dielectric parameters. The ac conductivity also is enhanced with increasing MnO content. The mechanism responsible for such increase is well explained based on the modifying action of Mn2+ ions. 相似文献
9.
《Journal of Non》1997,209(3):209-226
The IR reflection spectra of mixed zinc alkali pyrophosphate glasses in the broad frequency ranges are reported and the quantitative treatment of these with a version of the dispersion analysis method was conducted based on the specific analytical model of the complex dielectric constant of glasses. Numerical data on the optical constants, band frequencies, and band intensities are calculated. Results obtained are interpreted in terms of vibrations of the (PO3)2− and (PO2)− terminal groups, (PO4)3− anion, and P–O–P bridge. The presence of all these groups in the structures of glasses under study is confirmed and the formation of the (P3O9)3− ring metaphosphate anion rather than the chain polymeric phosphate anions is suggested. The gradual decrease in the width of the anion distribution toward the pyrophoshate anion with the Me2O for ZnO substitution is also confirmed. It is shown that this decrease determines the IR spectrum variations observed in the 0 to about 27 mol% Na2O composition range. The amounts of the (PO4)3− and (P3O9)3− anions are shown to become negligible in the structures of glasses with Na2O content greater than 30 mol%, and the IR spectrum variations observed in the 27–45 mol% Na2O composition range are shown to be mostly due to the intensity redistribution from the low-frequency component of the asymmetric stretch of the (PO3)2− terminal group to the high-frequency component of the same stretch. 相似文献
10.
Development of crystallization in the CaO–Al2O3–TiO2–P2O5 system glasses was investigated in the presence of ionic and metallic silver. Differential thermal analysis, X-ray diffractometry, ultra violet–visible spectrophotometry, atomic force microscopy and scanning electron microscopy were used to evaluate the resulted glasses and glass-ceramics. It was found that silver ions facilitated crystallization by decreasing the viscosity of the glasses. However, metallic silver, which was formed through heat treatment in hydrogen atmosphere, improved heterogeneous crystallization of the reduced glasses in the subsequent heat treatment. The preformed metallic silver led to effective crystallization of calcium titanium phosphate (CaTi4(PO4)6), calcium metaphosphate (Ca(PO3)2) and calcium pyrophosphate (Ca2P2O7) phases at significantly decreased temperatures. The two latter phases were partially dissolved out by leaching in acidic solution and left out a porous structure of calcium titanium phosphate glass-ceramic. 相似文献
11.
《Journal of Non》2003,315(1-2):77-88
The crystallisation of CaO–ZrO2–SiO2 glasses doped with V2O5 (0.1–5 mol%) has been investigated in terms of microstructure and thermal parameters. Results indicate that crystallisation is predominantly controlled by a surface nucleation mechanism, even though a partial bulk nucleation has been encountered in compositions containing more than 2 mol% of doping oxide. As detected from differential thermal analysis curves, glass transition temperature and crystallisation temperature, are strongly dependent upon V2O5 content varying from 0.0 to 2.0 mol%, while the crystallisation activation energy values decrease with a parabolic trend from B-glass (0.0 mol% V2O5 content, 495±7) to V-0.7 (0.7 mol% V2O5 content, 420±6) composition, increasing again to 442±5 kJ/mol K with higher amount of V2O5. The microstructure of the glass-ceramic materials clearly showed a marked dependence upon the amount of V2O5, also due to the presence of phase separation for content higher than 0.7 mol%. Wollastonite, CaO·SiO2, and a calcia–zirconia–silicate, 2CaO·4SiO2·ZrO2, are the main crystalline phases whose ratio slightly varies with vanadium oxide content. The glass ceramics obtained from the studied materials are greenish and bluish coloured, so it is possible to use the studied glasses as coloured frits for tile glazes. 相似文献
12.
U. Hoppe N.P. Wyckoff M.L. Schmitt R.K. Brow A. Schöps A.C. Hannon 《Journal of Non》2012,358(2):328-336
The atomic structures of two V2O5–P2O5 glasses and vitreous (v-) V2O5 were investigated by X-ray and neutron diffraction. The V=O double bond is a common characteristic of the VOn units that constitute the structures of the glasses. VO5 square pyramids with elongated bonds of ~ 0.190 nm to the pyramidal base are found for the 50V2O5–50P2O5 glass. These weaker V–O bonds are balanced in V–O–P bridges by overbonded P–O bonds. The V(IV) sites, which account for 19.7% and 35.2% of the total V sites in the 73V2O5–27P2O5 and 50V2O5–50P2O5 glasses, respectively, form similar pyramids in agreement with the structure of crystalline (VO)2P2O7. The short-range structure of v-V2O5 and the 73V2O5-27P2O5 glass is formed of mixtures of VO5 and VO4 pyramids. A significant amount of V···O distances > 0.22 nm found for all glasses belong either to linkages V=O···V or to three-coordinated O sites. 相似文献
13.
B11 NMR spectra have been used to study the structure of glasses in the system K2OB2O3P2O5. The results indicate that the glasses do not contain an appreciable number of boron atoms in BO3 units with one or two non-bridging oxygens. The fraction N4 of boron atoms in BO4 units is measured and analyzed according to a structural model containing the following elements. (1) If the binary borophosphate system forms glasses, they consist of a borophosphate (BPO4) network and a borate network for K<1, or a borophosphate (BPO4) network and a phosphate network for K>1, where K = mol.% P2O5/mol.% B2O3. (2) The conversion rates of BO4 units (i.e. the rate of production or destruction by added oxygens) in the borate network and the borophosphate (BPO4) network are given as (+2) and (?0.38), respectively. (3) K+1 ions are proportionally shared between the two networks; (i.e. between the borate and borophosphate (BPO4) networks for K<1, and between the phosphate and borophosphate (BPO4) networks for K>1). 相似文献
14.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0 ≤ x ≤ 15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions. 相似文献
15.
V.N. Sigaev N.V. Golubev S.Yu. Stefanovich T. Komatsu Y. Benino P. Pernice A. Aronne E. Fanelli B. Champagnon V. Califano D. Vouagner T.E. Konstantinova V.A. Glazunova 《Journal of Non》2008,354(10-11):873-881
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired. 相似文献
16.
Regularities of phase transformations in glasses of the Li2O–Al2O3–SiO2–TiO2 system doped with up to 2.5 mol% of alkali- and divalent metal oxides were studied by X-ray diffraction analysis, Raman scattering and optical spectroscopy. Ni(II) ions were used as spectral probes of phase transformations because Ni(II)-ions enter the inhomogeneous regions formed during the phase separation and crystallization, and their absorption spectra change with heat-treatment temperature reflecting formation of aluminotitanate amorphous regions, spinel nanosized crystals and β-quartz solid solutions, consequently.It was demonstrated that the technological additives do not change the sequence of the phases' formation but accelerate the liquid phase separation and crystallization. Addition of MgO and ZnO leads to increasing the temperature range of spinel precipitation. Addition of CaO, BaO and PbO results in increasing the light scattering of prepared glass-ceramics.In selection of the technological additives for decreasing the melting temperature of glass-ceramics for optical and photonic applications the influence of the additives on the structure and optical properties of the prepared material should be considered. 相似文献
17.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching. 相似文献
18.
Z. Amirahmadi V.K. Marghussian A. Beitollahi S.M. Mirkazemi H. Sarpoolaky 《Journal of Non》2011,357(16-17):3195-3199
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses. 相似文献
19.
F.A. Bomfim J.R. Martinelli L.R.P. Kassab N.U. Wetter J.J. Neto 《Journal of Non》2008,354(42-44):4755-4759
The effect of Yb3+ concentration on the frequency upconversion (UPC) of Er3+ in PbO–GeO2–Ga2O3 glasses is reported for the first time. Samples were prepared with 0.5 wt% of Er2O3 and different concentrations of Yb2O3 (1.0–5.0 wt%). The green (523 and 545 nm) and red (657 nm) emissions are observed under 980 nm diode laser excitation. The dependence of the frequency UPC emission intensity upon the excitation power was examined and the UPC mechanisms are discussed. An interesting characteristic of these glasses is the increase of the ratio of red to green emission, through an increase of the Yb3+ concentration due to an efficient energy transfer from Yb3+ to Er3+. 相似文献
20.
The glass forming region of the system P2O5–Na2O–Fe2O3 was determined, using phosphate salts as precursor materials. The glasses were produced in non-wetting gold/platinum crucibles in order to avoid contamination. Glass formation was confirmed using XRD and the final composition determined using EDX. The glass forming region was found to be relatively short at 50% P2O5 content in comparison to both lower and higher P2O5 content. As expected, the inclusion of Fe2O3 had a significant effect on both glass transition temperature and density with a peak seen at around 30 mol% Fe2O3. This coincides with previously reported abrupt structural changes in the glass. The inclusion of Na2O has little effect on the glass transition temperature but causes a small increase in density. 相似文献