首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an imperfect interface on the dispersive behavior of in-plane time-harmonic symmetric waves in a pre-stressed incompressible symmetric layered composite, was analyzed recently by Leungvichcharoen and Wijeyewickrema (2003). In the present paper the corresponding case for time harmonic anti-symmetric waves is considered. The bi-material composite consists of incompressible isotropic elastic materials. The imperfect interface is simulated by a shear-spring type resistance model, which can also accommodate the extreme cases of perfectly bonded and fully slipping interfaces. The dispersion relation is obtained by formulating the incremental boundary-value problem and using the propagator matrix technique. The dispersion relations for anti-symmetric and symmetric waves differ from each other only through the elements of the propagator matrix associated with the inner layer. The behavior of the dispersion curves for anti-symmetric waves is for the most part similar to that of symmetric waves at the low and high wavenumber limits. At the low wavenumber limit, depending on the pre-stress for perfectly bonded and imperfect interface cases, a finite phase speed may exist only for the fundamental mode while other higher modes have an infinite phase speed. However, for a fully slipping interface in the low wavenumber region it may be possible for both the fundamental mode and the next lowest mode to have finite phase speeds. For the higher modes which have infinite phase speeds in the low wavenumber region an expression to determine the cut-off frequencies is obtained. At the high wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the phase speeds of the surface wave or the interfacial wave or the limiting phase speed of the composite. The bifurcation equation obtained from the dispersion relation yields neutral curves that separate the stable and unstable regions associated with the fundamental mode or the next lowest mode. Numerical examples of dispersion curves are presented, where when the material has to be prescribed either Mooney–Rivlin material or Varga material is assumed. The effect of imperfect interfaces on anti-symmetric waves is clearly evident in the numerical results.  相似文献   

2.
The dispersive behaviour of time-harmonic waves propagating along a principal direction in a perfectly bonded pre-stressed compressible elastic bi-material laminate is considered. The dispersion relation which relates wave speed and wavenumber is obtained by formulating the incremental boundary value problem and the use of the propagator matrix technique. At the low wavenumber limit, depending on the pre-stress, both the fundamental mode and the next lowest mode may have finite phase speeds. For the higher modes which have infinite phase speeds in the low wavenumber region, an expression to determine the cut-off frequencies is obtained. At the high wavenumber limit, the phase speeds of the fundamental mode and higher modes tend to phase speeds of the surface wave, the interfacial wave or the limiting phase speed of the composite. For numerical examples, either a two-parameter compressible neo-Hookean material or a two-parameter compressible Varga material is assumed.  相似文献   

3.
The effect of an imperfect interface, on time-harmonic extensional wave propagation in a pre-stressed symmetric layered composite is considered. The bimaterial composite consists of incompressible isotropic elastic materials. The shear spring type resistance model employed to simulate the imperfect interface can accommodate the extreme cases of perfect bonding and a fully slipping interface. The dispersion relation obtained by formulating the incremental boundary-value problem and the use of the propagator matrix technique, is analyzed at the low and high wavenumber limits. For the perfectly bonded and imperfect interface cases in the low wavenumber region, only the fundamental mode has a finite phase speed, while other higher modes have an infinite phase speed when the dimensionless wavenumber approaches zero. However, for the fully slipping interface in the low wavenumber region, both the fundamental mode and the next lowest mode have finite phase speeds. In the high wavenumber region, when the dimensionless wavenumber tends to infinity, the phase speeds of the fundamental mode and the higher modes depend on the phase speeds of the surface and interfacial waves and on the limiting phase speed of the composite. An expression to determine the cut-off frequencies is obtained from the dispersion relation. Numerical examples of dispersion curves are presented, where when the material has to be prescribed either Mooney–Rivlin material or Varga material is assumed. The effect of the imperfect interface is clearly evident in the numerical results.  相似文献   

4.
The propagation of finite-amplitude time-harmonic shear horizontal waves, in a pre-stressed compressible elastic layer of finite thickness embedded between two identical compressible elastic half-spaces, is investigated. This is accomplished by combining finite-amplitude linearly polarized inhomogeneous transverse plane wave solutions in the half-spaces and finite-amplitude linearly polarized unattenuated transverse plane wave solutions in the layer. The layer and half-spaces are made of different pre-stressed compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber is obtained in explicit form. The special case where the interfaces between the layer and the half-spaces are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results are presented showing the variation of the shear horizontal wave speed with the pre-stress and the propagation angle.  相似文献   

5.
The dispersive behavior of finite-amplitude time-harmonic Love waves propagating in a pre-stressed compressible elastic half-space overlaid with two compressible elastic surface layers of finite thickness is investigated. The half-space and layers are made of different pre-stressed compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber is obtained in explicit form. Results for the energy density and energy flux of the waves are also presented. The special case where the interfaces between the layers and the half-space are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results are presented showing the variation of the Love wave speed with the pre-stress and the propagation angle.  相似文献   

6.
An analytical approach is used to investigate the effects of covering layer thickness on the propagation behavior of Love waves in functionally graded piezoelectric materials (FGPMs) covered with a dielectric layer. The piezoelectric substrate is polarized in the direction perpendicular to the wave propagation plane, and its material parameters change continuously along the thickness direction. The dispersion equations for the existence of Love waves with respect to phase velocity are obtained for electrically open and shorted cases, respectively. A detailed investigation of the effects of the covering dielectric layer thickness on dispersion curve, phase velocity, group velocity, and electromechanical coupling factor is carried out. Numerical results show that for a given FGPM, the covering dielectric layer thickness affects significantly the fundamental mode of Love waves but has only negligible effects on the high-order modes. The changes in phase velocity, group velocity, and electromechanical coupling factor due to the change of gradient coefficient of FGPMs could be approached approximately by changing the thickness of the covering dielectric layer, which imply a potential factor for designing new-type surface wave devices with FGPMs.  相似文献   

7.
气液两相流压力波传播速度研究   总被引:9,自引:0,他引:9  
将双流体模型用于绝热无相的管道气液两相流,依据小扰动线化分析原理,导出了压力波波数K方程通过对不同空隙率下肉体上压力波小随角频率变化的计算,研究了虚拟质量力和狭义相间阻力对压力波波速及其人色散性的影响。对泡状流和弹状流压力波波速的计算结果与前人的测量结果作了比较,两者符合良好。  相似文献   

8.
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit, the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.  相似文献   

9.
The wave propagation analysis in corrugated waveguides is considered in this paper. Elastic wave propagation in a two-dimensional periodically corrugated plate is studied here analytically. The dispersion equation is obtained by applying the traction free boundary conditions. Solution of the dispersion equation gives both symmetric and anti-symmetric modes. In a periodically corrugated waveguide all possible spectral order of wave numbers are considered for the analytical solution. It has been observed that the truncation of the spectral order influences the results. Truncation number depends on the degree of corrugation and the frequency of the wave. Usually increasing frequency requires increasing number of terms in the series solution, or in other words, a higher truncation number. For different degrees of corrugation the Rayleigh–Lamb symmetric and anti-symmetric modes are investigated for their non-propagating ‘stop bands’ and propagating ‘pass bands’. To generate the dispersion equation for corrugated plates with a wide range of the degree of corrugation, appropriate truncation of the spectral orders has to be considered. Analytical results are given for three different degrees of corrugation in three plates. Resonance of symmetric and anti-symmetric modes in these plates, their ‘cut-off’, ‘cut-on’, ‘branch-point’, ‘change-place’, ‘mode conversion’ and ‘pinch points’ at various frequencies are also studied.  相似文献   

10.
The dispersion of harmonic waves, propagating along a principal direction in a pre-stressed, compressible elastic plate, is investigated in respect of the most general isotropic strain-energy function. Different cases, dependent on the choice of material parameters and pre-stress, are analysed. A complete long and short wave asymptotic analysis is carried out, with the approximations obtained giving phase speed (and frequency) as explicit functions of wave and mode number. Various wave fronts, both associated with the short wave limit of harmonics and arising through the combination of harmonics in a narrow wave speed region, are discussed. It is mentioned that the case of high compressibility is of particular interest. In contrast with the classical (un-strained) case, the longitudinal body wave speed may be less than the corresponding shear wave speed. In consequence, the short wave limit of all harmonics may be the appropriate longitudinal wave speed; contrasting with the classical case for which this limit is necessarily associated with a shear wave front. A further possible short wave limit is also shown to exist for which the associated wave normal has a component in the direction normal to the plate. Particularly novel numerical results are presented when the longitudinal and shear wave speeds are equal. The analysis is illustrated by numerical calculations for various strain-energy functions.  相似文献   

11.
基于线性三维弹性理论,采用勒让德正交多项式展开法,推导了波沿正交各向异性材料非主轴方向传播时的Lamb波耦合波动方程,并对耦合波动方程进行了数值求解。为验证该方法的适用性和正确性,首先将此方法应用于各向同性材料,并与已知的数据结果进行了比较;然后以单向纤维增强复合材料为例,计算了耦合Lamb波沿不同的非主轴方向传播时的相速度频散曲线,并分别研究了传播方向改变时低阶模态Lamb波和高阶模态Lamb波频散特性的变化。最后,针对潜在用于各向异性复合材料结构健康监测的耦合Lamb波低阶模态,给出了其在不同传播方向时的相速度分布和群速度分布。同时,结合低阶模态Lamb波的位移分布特性和材料的各向异性特点,阐释了S0模态对波的传播方向变化最为敏感的原因。  相似文献   

12.
The effects of elastic anisotropy in piping materials on fluid–structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress–strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.  相似文献   

13.
A fast and efficient two-dimensional (2D) semi-analytical model based on global matrix method is developed to study the general characteristics of guided wave propagation in a honeycomb composite sandwich structure (HCSS) subjected to time-dependent transient surface excitations. The HCSS used in this study has an extremely lightweight and thick nomex honeycomb core, which is sandwiched between two thin graphite woven composite skins. The homogenized material properties of the skin and the core are considered to be elastic and quasi-isotropic in nature. Far-field time history of surface displacements are calculated for vertical and horizontal tone-burst surface excitations that are representative of thickness and radial mode of vibrations of piezoelectric transducers, respectively. Results are compared with those obtained from Finite element modeling (FEM) in LS-DYNA showing good agreement. Wavelet transform is then performed on the time-domain signal to obtain the group velocities of the propagating modes for their accurate identification on the basis of the theoretical dispersion curve. It is found that the response signal is dominated by the first anti-symmetric mode for a vertical excitation, whereas, the signal characteristics are multimodal in nature with dominating higher order symmetric and anti-symmetric modes for a horizontal excitation. The model is expected to be helpful for appropriate guided wave mode tuning and rapid analysis of data for experimental detection of disbonds in these novel structures.  相似文献   

14.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

15.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

16.
Dissipative numerical approximations to the linear advection equation are considered with respect to their behaviour in the limit of weak dissipation. The context is wave propagation under typical far-field conditions where grids are highly stretched and waves are underresolved. Three classes of schemes are analysed: explicit two-level (i) symmetric and (ii) upwind schemes of optimal accuracy are considered as well as (iii) (symmetric) Runge-Kutta schemes. In the far-field the dissipation of all schemes diminishes. Group speeds of high-frequency modes assume the incorrect sign and may admit ‘backward’ wave propagation if waves are not damped. A fundamental difference arises between the symmetric and upwind cases owing to the different rates at which the dissipation diminishes. In the upwind case, while the amount of damping per time step diminishes, the accumulative damping remains exponential in time. In the symmetric case the accumulative damping tends to unity, yielding in practice non-dissipative schemes. In this light, parasitic modes constitute much less of a problem in the upwind case than in the symmetric case. Numerical tests confirm these findings.  相似文献   

17.
The aim of this study is to investigate the leaky and non-leaky behaviours of guided waves, between the composite skin and the core in CF/EP sandwich structures, focusing on the fundamental symmetric like and anti-symmetric like guided wave modes and Rayleigh waves. In investigating the core effect on the guided wave propagation different types of cores are used, namely Nomex honeycomb (HRH 10 1/8-3) 10 and 20 mm in thickness and foam (Divinycell®  PVC). The behaviour of the guided wave modes is characterised and the conversion mechanism to the Rayleigh wave is investigated. Further, leaky and non-leaky behaviours of guided waves upon interacting with debonded areas are explored, where the ability of guided waves to identify debonding of different sizes was assessed. Finite element analysis simulations are presented to support the experimental analysis, where propagation of ultrasonic waves and their interaction with debonded areas are quantitatively examined.  相似文献   

18.
We theoretically investigated the cumulative nonlinear guided waves caused by internal resonance, using the method of multiple scales (MMS), which can construct better approximations to the solutions of perturbation problems. In this study, we consider nonlinearity only on the boundary instead of material nonlinearity or geometric nonlinearity. We showed nonlinear effects on the amplitudes of a lower mode and a higher mode depending on the propagation length. Also, we examined effects of wavenumber detuning from a phase matching condition of the two modes. If the wavenumber detuning is exactly equal to zero, the mechanical energy of the lower mode is transferred through nonlinear coupling to the energy of the higher mode, unilaterally. However, if a wavenumber detuning is not equal to zero, amplitude of the two modes change in a cyclic fashion during wave propagation. The amount of this amplitude variation and its cycle length are determined by the eigenfunctions of the two modes, the nonlinear parameter and the wavenumber detuning.  相似文献   

19.
Propagation of elastic phononic waves in layered composite materials is analyzed by introducing nonsmooth periodic coordinates associated with structural specifics of the materials. Spatial scales of the original (smooth) coordinates are estimated by the wave lengths. In terms of the new coordinates, the homogenization procedure occurs naturally from the continuity conditions imposed on elastic displacements and forces at layer interfaces. As a result, higher-order asymptotic approximations describing spatiotemporal ‘macro’- and ‘micro’-effects of wave propagation are obtained in closed form. Such solutions provide visualizations for the wave shapes illustrating their structure induced local details. In particular, beat-wise mode shapes and effective anisotropy of acoustic wave propagation are revealed. The subharmonic beating in wave modes occur when wave lengths orthogonal to layers is about to ‘resonate’ with layer’ thickness. If the wave speed has a non-zero projection along the layers, then phase shifts between the beats are observed in different cross sections perpendicular to the layers.  相似文献   

20.
Based on the theories of anisotropic elasticity, piezoelectricity and elastic waves in solids, the propagation of antisymmetric Lamb waves in a biasing electric field is investigated in this paper. By solving the coupled differential equations of motion under a biasing electric field, the phase velocity equations of antisymmetric Lamb wave modes for electrically open and shorted cases are obtained, respectively. The beating effect arising from the difference between the phase velocity of the zero-order symmetric mode and antisymmetric mode exists in the plate when the plate has a thickness comparable to or slightly larger than the wavelength. The influence of the biasing electric field on the phase velocity, beat wavelength, mechanical displacement and stress fields for the lowest two antisymmetric modes of Lamb waves are discussed in detail. From the calculated results, it is seen that the phase velocity of the fundamental antisymmetric mode is especially sensitive to the applied biasing electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号