首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Crystal Growth》2003,247(3-4):284-290
Al0.1Ga0.9N(5 nm)/GaN(2 nm) and In0.2Ga0.8N/GaN quantum wells (QWs) grown on GaN/sapphire have been studied by cathodoluminescence (CL) spectroscopy and imaged using an experimental setup especially developed for scanning near-field CL microscopy, which combines a scanning force microscope and a scanning electron microscope. The CL spectra show the characteristic band edge emission peak of GaN at λ= 364 nm and the emission peaks related to the presence of QWs, at λ= 353 and 430 nm for the AlGaN/GaN and the InGaN/GaN samples, respectively. Monochromatic CL images reveal that the emission of the AlGaN/GaN and InGaN/GaN QWs is localized at the level of the grains observed by SFM. A cross sectional analysis of the InGaN/GaN sample gives insight into its growth and an estimation of the exciton diffusion length of about L=180 nm.  相似文献   

2.
Chemical lift-off of (11–22) semipolar GaN using triangular cavities was investigated. The (11–22) semipolar GaN was grown using epitaxial lateral overgrowth by metal-organic chemical vapor deposition on m-plane sapphire, in such a way as to keep N terminated surface of c-plane GaN exposed in the cavities. After regrowing 300 μm thick (11–22) semipolar GaN by hydride vapor phase epitaxy for a free-standing (11–22) semipolar GaN substrate, the triangular cavities of the templates were chemically etched in molten KOH. The (000-2) plane in the triangular cavities can be etched in the [0002] direction with the high lateral etching rate of 196 μm/min. The resulting free-standing (11–22) semipolar GaN substrate was confirmed to be strain-free by the Raman analysis.  相似文献   

3.
《Journal of Crystal Growth》2006,286(2):235-239
The characteristics of Si-doped and undoped GaN/Si(1 1 1) heteroepitaxy with composite buffer layer (CBL) and superlattice are compared and discussed. While as-grown Si-doped GaN/Si(1 1 1) heteroepitaxy shows lower quality compared to undoped GaN, crack-free n-type and undoped GaN with the thickness of 1200 nm were obtained by metalorganic chemical vapor deposition (MOCVD). In order to achieve the crack-free GaN on Si(1 1 1), we have introduced the scheme of multiple buffer layers; composite buffer layer of Al0.2Ga0.8N/AlN and superlattice of Al0.2Ga0.8N/GaN on 2-in. Si(1 1 1) substrate, simultaneously. The FWHM values of the double-crystal X-ray diffractometry (DCXRD) rocking curves were 823 arcsec and 745 arcsec for n-GaN and undoped GaN/Si(1 1 1) heteroepitaxy, respectively. The average dislocation density on GaN surface was measured as 3.85×109 and 1.32×109 cm−2 for n-GaN and undoped GaN epitaxy by 2-D images of atomic force microscopy (AFM). Point analysis of photoluminescence (PL) spectra was performed for evaluating the optical properties of the GaN epitaxy. We also implemented PL mapping, which showed the distribution of edge emission peaks onto the 2 inch whole Si(1 1 1) wafers. The average FWHMs of the band edge emission peak was 367.1 and 367.0 nm related with 3.377 and 3.378 eV, respectively, using 325 nm He-Cd laser as an excitation source under room temperature.  相似文献   

4.
《Journal of Non》2007,353(11-12):1037-1040
Amorphous Eu2O3 was prepared by an aqueous sol–gel method. Emission due to the 5D0  7FJ (J = 0, 1, 2) transitions of Eu3+ ions were observed. The dominant transition was the 5D0  7F2 red emission of Eu3+. The properties of the as-prepared samples were different with changes in the annealing temperature. To investigate the luminescence properties of the amorphous Eu2O3, the temperature-dependent photoluminescence (PL) spectra of samples annealed at 600 °C were measured in the temperature range 77–300 K. PL peak positions were unchanged with the change of temperature.  相似文献   

5.
m-Plane GaN was grown selectively by metal–organic chemical vapor deposition (MOCVD) on patterned Si(1 1 2) substrates, where grooves aligned parallel to the Si〈1 1 0〉 direction were formed by anisotropic wet etching to expose the vertical Si{1 1 1} facets for growth initiation. The effect of growth conditions (substrate temperature, chamber pressure, and ammonia and trimethylgallium flow rates) on the growth habits of GaN was studied with the aim of achieving coalesced m-plane GaN films. The epitaxial relationship was found to be GaN(1 1? 0 0) || Si(1 1 2), GaN[0 0 0 1] || Si[1 1 –1], GaN[1? 1? 2 0] || Si[1 1? 0]. Among all growth parameters, the ammonia flow rate was revealed to be the critical factor determining the growth habits of GaN. The distribution of extended defects, such as stacking faults and dislocations, in the selectively grown GaN were studied by transmission electron microscopy in combination with spatially resolved cathodoluminescence and scanning electron microscopy. Basal-plane stacking faults were found in the nitrogen-wing regions of the laterally overgrown GaN, while gallium-wings were almost free of extended defects, except for the regions near the GaN/Si{1 1 1} vertical sidewall interface, where high dislocation density was observed.  相似文献   

6.
We have successfully grown high-purity and -quality PbI2 single crystals by the vertical Bridgman method. The rocking curves of four-crystal X-ray diffraction (XRD) show 120 arcsec in full-width at half-maximum (FWHM). The photoluminescence (PL) spectra at 7.8 K show the resolved intensive exciton emission line and the weak DAP emission band. The deep-level emissions are not observed. The measurement of the electrical and radiographic properties show that Leadiodide (PbI2) single crystal has a resistivity of 5×1010 Ω cm and imager lag is 8 s, respectively. In order to improve the controllability of crystal growth, PbI2 single crystals were also grown from a lead (Pb) excess PbI2 source. The experimental results show very good reproducibility. In addition, the growth models of crystal are proposed, and the growth mechanism is discussed.  相似文献   

7.
《Journal of Non》2006,352(23-25):2484-2487
This paper presents the comparative investigation of photoluminescence (PL) and its temperature dependence for rf-magnetron co-sputtered Si-enriched SiOx systems and amorphous Si films prepared by hot-wire CVD method with Si nanocrystallites of different sizes. It is shown that PL spectra of Si–SiOx films consist of the five PL bands peaked at 1.30, 1.50, 1.76, 2.05 and 2.32 eV. Amorphous Si films with Si nanocrystallites are characterized by three PL bands only peaked at 1.35, 1.50 and 1.76 eV. The peak position of the 1.50 eV PL band shifts with the change of Si quantum dot sizes and it is attributed to exciton recombination inside of Si quantum dots. The nature of four other PL bands is discussed as well.  相似文献   

8.
《Journal of Non》2006,352(23-25):2332-2334
In this work we report on the growth and characterization of high quality MOCVD GaN film grown on Al2O3 substrates by using a HT (>1150 °C)-AlN buffer layer. We have investigated the most favorable growth conditions in terms of temperature, thickness and growth rate of AlN buffer layer in order to optimize the high temperature GaN layer. The improved morphological and structural properties of GaN layer were verified by AFM and XRD measurements. The optimized GaN layer presents a smooth surface with a rms value of 1.4 Å. The full width at half maximum (FWHM) for 800 nm thick GaN films is 144″. Furthermore PL measurements and CV analysis confirm that in GaN layer grown on HT-AlN buffer layer defect density is drastically reduced.  相似文献   

9.
《Journal of Non》2007,353(44-46):4048-4054
The nanostructural, chemical, and optical features of AlxSi0.45−xO0.55 (0  x 0.05) thin films were investigated in terms of Al concentration and post-deposition annealing conditions; the films were prepared by co-sputtering a Si main target and Al-chips, and the annealing was carried out at temperatures of 400–1100 °C. The a-Si0.45O0.55 films prepared without Al-chips and annealed at 800 °C contain ∼3.5 nm-sized Si nanocrystallites. The photoluminescence (PL) intensity as well as the volume fraction of Si nanocrystallites increased with increasing the concentration of Al to a certain level. In particular, the intensity of the PL spectra of the Al0.025Si0.425O0.550 films which were annealed at 800 °C increased significantly at wavelengths of ∼580 nm. It is highly likely that the observed increase in the PL intensity is caused by the raise in the total volume of the ∼3.5 nm-sized nanocrystallites in the films. The addition of Al as well as the post-deposition annealing allow adjustment and control of the nanostructural and light-emission features of the a-SiOx films.  相似文献   

10.
Dysprosium doped GexGa5Se(95?x) (x = 15–30) chalcogenide glasses were synthesized in this present work. The Vis–NIR transmission spectra, photoluminescence spectra and lifetime were measured. Glasses (x = 27.5, 29.17 and 30) doped with 0.2 wt% dysprosium ions shows relatively strong emission bands at 1146 and 1343 nm when pumped at 808 nm. The emission lifetime ranged from 440 to 540 μs. The oscillator strengths and intensity parameters Ωt (t = 2, 4 and 6) were calculated using Judd–Ofelt theory.  相似文献   

11.
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 ?2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 ?2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434–3.442 eV. The film grown at 800 °C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission.  相似文献   

12.
《Journal of Non》2006,352(52-54):5463-5468
This work reports the effect of the presence of a Ni buffer layer on the photoluminescence (PL) of SiCxNy nanoparticle films prepared by RF plasma magnetron sputtering process in a reactive N2 + Ar + H2 gas mixture. An introduction of a Ni buffer of 80 nm or thicker remarkably improves the PL of the films. Annealing in a temperature range of 400–1100 °C is found to significantly affect the PL intensity. Optimal PL is achievable at 600 °C. X-ray photoelectron and Fourier-transform infrared spectroscopy suggest that the strong PL is directly related to the composition of the SiCxNy nanoparticle and the concentration of Si–O, and Si–N bonds. The results are relevant to the development of wide bandgap optoelectronic devices.  相似文献   

13.
A series of amorphous carbon-based films were deposited on the nanostructured Ag layers to observe surface plasmon (SP) enhanced photoluminescence (PL). The dependence of PL peak wavelength and intensity on the film composition and the nanostructure of the Ag layers were systematically investigated. The PL wavelength was tuned from 442 nm to 635 nm by varying the carbon content of the as-deposited carbon-based films. The nanostructure of Ag layers varied from nanoparticles (NPs) to continuous films via process control. With the SPs generated at the carbon-based film/Ag layer interface, the PL intensity was found to be significantly enhanced with a peak enhancement factor of 6, and the light emission range of the composite films was extended to 434–653 nm. The dependence of PL intensity on the spectral overlap between the carbon-based films and plasmon resonant Ag layers, Ag surface morphology and the internal quantum efficiency (IQE) of the carbon-based films was discussed. The redshift of SP resonance with the increasing refractive index of the upper carbon-based films was observed.  相似文献   

14.
Polar and non-polar ZnMgO were synthesized on different crystallographic planes (C-, R- and M-planes) of sapphire (Al2O3) substrates by metal organic chemical vapor deposition, respectively. Under the same experimental condition, polar ZnMgO nanorods were obtained on C-Al2O3 substrate whereas non-polar ZnMgO thin films were obtained on R- and M-Al2O3 substrates. The surface morphology was significantly influenced by the competition of the preferable growth directions on different sapphire substrates. On C-Al2O3 substrate, ZnMgO nanorods were vertically well-aligned with typical lengths in the range 330–360 nm. On R- and M-Al2O3 substrates, however, ZnMgO thin films with flat surfaces were obtained, whose thickness were 150 and 20 nm, respectively. Under the same condition, the C-ZnMgO deposited on C-Al2O3 substrate has the maximum growth velocity (11 nm/nim), followed by A-ZnMgO deposited on R-Al2O3 substrate (5 nm/min), and the M-ZnMgO deposited on M-Al2O3 substrate has the minimum one (0.67 nm/min). The Near-Band-Edge (NBE) emission in Photoluminescence (PL) spectra shows a clear blueshift and a slight broadening compared with that of pure ZnO samples, which suggest that the Mg content has successfully incorporated into ZnO. The different energy blueshifts (67 meV and 98 meV) of the NBE emission demonstrate that A-ZnMgO deposited on R-Al2O3 substrate has higher Mg incorporation efficiency than C-ZnMgO on C-Al2O3 substrate.  相似文献   

15.
We report the time-dependent intensities for the photoluminescence (PL) at various temperatures (10 K ? T ? 300 K) in amorphous GeS2, which is known to exhibit not only PL fatigue but also PL recovery behavior. A difference in reversibility in fatigue-recovery process was found between room temperature (RT) and those at 110 K or below. Another small band of PL was also observed at 10 K or less, which also showed a time-dependence in intensity. A functional form to describe the time dependence was adopted based on a simplified model which have been obtained in a previous study and extended to describe the fatigue-recovery behaviors for all temperature range which have measured below RT.  相似文献   

16.
《Journal of Crystal Growth》2003,247(3-4):261-268
GaN and AlN films were grown on (1 1 1) and (0 0 1) Si substrates by separate admittances of trimethylgallium (or trimethylaluminum) and ammonia (NH3) at 1000°C. A high temperature (HT) or low temperature (LT) grown AlN thin layer was employed as the buffer layer between HT GaN (or HT AlN) film and Si substrate. Experimental results show that HT AlN and HT GaN films grown on the HT AlN-coated Si substrates exhibit better crystalline quality than those deposited on the LT AlN-coated Si substrates. Transmission electron microscopy (TEM) of the HT GaN/HT AlN buffer layer/(1 1 1)Si samples shows a particular orientation relationship between the (0 0 0 1) planes of GaN film and the (1 1 1) planes of Si substrate. High quality HT GaN films were achieved on (1 1 1) Si substrates using a 200 Å thick HT AlN buffer layer. Room temperature photoluminescence spectra of the high quality HT GaN films show strong near band edge luminescence at 3.41 eV with an emission linewidth of ∼110 meV and weak yellow luminescence.  相似文献   

17.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

18.
《Journal of Non》2006,352(28-29):3041-3046
We search for the presence of stimulated emission in samples of porous silicon embedded in the sol–gel derived SiO2 matrix. By modifying the etching conditions of the porous silicon using hydrogen peroxide, we decrease substantially the nanocrystal size and produce a significant blue shift of the PL emission. Femtosecond variable-stripe length experiments combined with the shifting-excited spot technique demonstrates positive optical gain (modal gain ∼25 cm−1) in the range 550–730 nm. Ultrafast photoluminescence dynamics indicates the origin of the stimulated emission as possibly due to recombination of excitonic states inside silicon nanocrystals.  相似文献   

19.
The effects of Fe-dopant concentration on the structure, optical, and magnetic properties of ZnO thin films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance, absorption, photoluminescence (PL), and magnetic measurements. XRD spectra indicated that the doping of Fe atoms could not only change the lattice constant of ZnO but also improve the crystalline quality of ZnO thin films. And the Zn (0 0 2) diffraction peak at round 36.34°(2θ) was detected with increasing Fe content for the substitution of the Zn in the ZnO film. The band gap edge shifted toward longer wavelength with increase in Fe doping. Moreover, near band edge emission gradually increased with increase in Fe content (up to about 0.82 wt%), and then abruptly decreased due to the concentration quenching effect. Magnetic measurements confirmed that the ferromagnetic behavior of Fe-doped ZnO was correlated with the dopant concentration.  相似文献   

20.
《Journal of Non》2006,352(21-22):2109-2113
As a new development of our previous study on the production of light-emitting amorphous Si (a-Si) films by the neutral cluster deposition (NCD) method, we have fabricated light-emitting Si films with improved emission intensity by the combined methods of NCD and subsequent high-temperature annealing. The structure of these films is best characterized by Si nanocrystals, surrounded by an interfacial a-SiOx (x < 2) layer, embedded in an a-SiO2 film. These improved Si films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence (PL) and Fourier transform infrared-attenuated total reflection measurements. The PL curves of the annealed samples exhibit peaks around 600 nm, at almost the same position as the unannealed samples. Their PL intensities, however, have increased to approximately five times those of the unannealed samples. The source of the luminescence is most likely due to electron-hole recombination in the a-SiO2/Si interfacial a-SiOx layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号