首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new micromechanics model, namely, the variational asymptotic method for unit cell homogenization (VAMUCH), is developed to predict the effective properties of periodically heterogeneous materials and recover the local fields. Considering the periodicity as a small parameter, we can formulate a variational statement of the unit cell through an asymptotic expansion of the energy functional. It is shown that the governing differential equations and periodic boundary conditions of mathematical homogenization theories (MHT) can be reproduced from this variational statement. In comparison to other approaches, VAMUCH does not rely on ad hoc assumptions, has the same rigor as MHT, has a straightforward numerical implementation, and can calculate the complete set of properties simultaneously without using multiple loadings. This theory is implemented using the finite element method and an engineering program, VAMUCH, is developed for micromechanical analysis of unit cells. Many examples of binary composites, fiber reinforced composites, and particle reinforced composites are used to demonstrate the application, power, and accuracy of the theory and the code of VAMUCH.  相似文献   

2.
3.
A mathematically rigorous method of homogenization is presented and used to analyze the equivalent behavior of transient flow of two incompressible fluids through heterogeneous media. Asymptotic expansions and H-convergence lead to the definition of a global or effective model of an equivalent homogeneous reservoir. Numerical computations to obtain the homogenized coefficients of the entire reservoir have been carried out via a finite element method. Numerical experiments involving the simulation of incompressible two-phase flow have been performed for each heterogeneous medium and for the homogenized medium as well as for other averaging methods. The results of the simulations are compared in terms of the transient saturation contours, production curves, and pressure distributions. Results obtained from the simulations with the homogenization method presented show good agreement with the heterogeneous simulations.  相似文献   

4.
This paper presents a new heterogeneous multiscale modeling method for porous media flows. Physics at the global level is governed by one set of PDEs, while features in the solution that are beyond the resolution capacity of the global model are accounted for by the next refined set of governing equations. In this method, the global or coarse model is given by the Darcy equation, while the local or refined model is given by the Darcy–Stokes equation. Concurrent domain decomposition where global and local models are applied to adjacent subdomains, as well as overlapping domain decomposition where global and local models coexist on overlapping domains, is considered. An interface operator is developed for the case where global and local models commute along the common interface. For the overlapping decomposition, a residual‐based coupling technique is developed that consistently facilitates bottom‐up embedding of scale effects from the local Darcy–Stokes model into the global Darcy model. Numerical results are presented for nonoverlapping and overlapping domain decompositions for various benchmark problems. Computed results show that the hierarchically coupled models accurately account for the heterogeneity of the medium and efficiently incorporate local features into the global response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The variational asymptotic method is used to construct a thermomechanical model for homogenizing heterogeneous materials made of temperature-dependent constituents subject to finite temperature changes with the restriction that the strain is small. First, we presented the derivation for a Helmholtz free energy suitable for finite temperature changes using basic thermodynamics concepts. Then we used this energy to construct a thermomechanical micromechanics model, extending our previous work which was restricted to small temperature changes. The new model is implemented in the computer code VAMUCH using the finite element method for the purpose of handling real heterogeneous materials with arbitrary periodic microstructures. A few examples including binary composites, fiber reinforced composites, and particle reinforced composites are used to demonstrate the application of this model and the errors introduced by assuming small temperature changes when they are not necessarily small.  相似文献   

6.
This paper presents a numerical technique to predict the effective elastic properties of heterogeneous fluid-filled porous media where the heterogeneity may result from dissimilar solid and fluid phase properties or due to mismatch in porous microstructure. The technique is based on the variational asymptotic method of homogenization where finite element method is employed for discretization. Biot’s theory of poroelasticity is used to describe porous media where both solid and fluid phase motions (u ? U formulation) are considered with associated strain measures. The method estimates the poroelastic constitutive law in single analysis which makes it very efficient compared to other finite element based homogenization techniques. The method is also general enough to compute all 28 elements of an anisotropic constitutive matrix. Other than estimating the effective properties the micro-stress/strain distribution is also obtained at no additional cost.The method is successfully applied for homogenization of porous media, fluid-filled cavity and finally for effective property estimation of bone lamella. In absence of any other direct method of porous media homogenization, the present technique is compared with classical homogenization methods with fluid approximated as solid of very high Poisson’s ratio. The suitability of this approximation and various other alternatives are also discussed. It is shown that the present homogenization method can be an efficient tool for bone property estimation where fluid-filled porous hierarchical micro-/nanostructure must be respected at all steps.  相似文献   

7.
Mohr圆的又一种分析法   总被引:1,自引:0,他引:1  
刘琦 《力学与实践》2002,24(1):55-57
从Mohr圆的几何关系入手,推出一种更直观的分析方法  相似文献   

8.
The paper addresses the problem of suitable approximation of the interaction between phases in heterogeneous materials that exhibit both viscous and elastic properties. A novel approach is proposed in which linearized subproblems for an inhomogeneity–matrix system with viscous or elastic interaction rules are solved sequentially within one incremental step. It is demonstrated that in the case of a self-consistent averaging scheme, an additional accommodation subproblem, besides purely viscous and elastic subproblems, is to be solved in order to estimate the material response satisfactorily. By examples of an isotropic two-phase material it is shown that the proposed approach provides acceptable predictions in comparison with the existing models.  相似文献   

9.
双周期圆截面纤维复合材料平面问题的解析法   总被引:4,自引:0,他引:4  
徐耀玲  蒋持平 《力学学报》2004,36(5):596-603
结合双准周期Riemann边值问题理论与Eshelby等效夹杂原理,为双周期圆截面纤维复合材 料平面问题发展了一个实用有效的解析方法,获得了问题的全场级数解并与有限元结果进行 了比较. 该方法为非均匀材料的力学性质分析和复合材料等新材料的微结构设计提供了 一个有效的计算工具,也可用来评估有限元等数值与近似方法的精度.  相似文献   

10.
Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.  相似文献   

11.
In this work, the question of homogenizing linear elastic, heterogeneous materials with periodic microstructures in the case of non-separated scales is addressed. A framework if proposed, where the notion of mesoscopic strain and stress fields are defined by appropriate integral operators which act as low-pass filters on the fine scale fluctuations. The present theory extends the classical linear homogenization by substituting averaging operators by integral operators, and localization tensors by nonlocal operators involving appropriate Green functions. As a result, the obtained constitutive relationship at the mesoscale appears to be nonlocal. Compared to nonlocal elastic models introduced from a phenomenological point of view, the nonlocal behavior has been fully derived from the study of the microstructure. A discrete version of the theory is presented, where the mesoscopic strain field is approximated as a linear combination of basis functions. It allows computing the mesoscopic nonlocal operator by means of a finite number of transformation tensors, which can be computed numerically on the unit cell.  相似文献   

12.
Multi-scale computational models offer tractable means to simulate sufficiently large spatial domains comprised of heterogeneous materials by resolving material behavior at different scales and communicating across these scales. Within the framework of computational multi-scale analyses, hierarchical models enable unidirectional transfer of information from lower to higher scales, usually in the form of effective material properties. Determining explicit forms for the macroscale constitutive relations for complex microstructures and nonlinear processes generally requires numerical homogenization of the microscopic response. Conventional low-order homogenization uses results of simulations of representative microstructural domains to construct appropriate expressions for effective macroscale constitutive parameters written as a function of the microstructural characterization. This paper proposes an alternative novel approach, introduced as the distribution-enhanced homogenization framework or DEHF, in which the macroscale constitutive relations are formulated in a series expansion based on the microscale constitutive relations and moments of arbitrary order of the microscale field variables. The framework does not make any a priori assumption on the macroscale constitutive behavior being represented by a homogeneous effective medium theory. Instead, the evolution of macroscale variables is governed by the moments of microscale distributions of evolving field variables. This approach demonstrates excellent accuracy in representing the microscale fields through their distributions. An approximate characterization of the microscale heterogeneity is accounted for explicitly in the macroscale constitutive behavior. Increasing the order of this approximation results in increased fidelity of the macroscale approximation of the microscale constitutive behavior. By including higher-order moments of the microscale fields in the macroscale problem, micromechanical analyses do not require boundary conditions to ensure satisfaction of the original form of Hill's lemma. A few examples are presented in this paper, in which the macroscale DEHF model is shown to capture the microscale response of the material without re-parametrization of the microscale constitutive relations.  相似文献   

13.
针对一维情况下随机排列非均质颗粒材料组成的结构,推导了该结构的刚度系数的解析表达式。颗粒材料由随机算法根据颗粒尺寸分布和结构尺寸生成。通过引入相对破碎参数,将颗粒破碎现象定量体现在颗粒尺寸分布函数的变化上,从而使本文提出的解析表达式能够计及颗粒破碎。数值结果说明本文提出表达式的有效性,并体现了颗粒破碎对颗粒结构刚度系数的影响。  相似文献   

14.
15.
Based on the diffusion within the material and the mass transfer through the air boundary layer, a VOCs sorption model with an arbitrary inlet concentration is proposed. With the use of Laplace transform and convolution theorem, a method to get the analytical solution has been developed, which helps to understand the mechanism of the sorption theoretically and makes the computation convenient. Experimental results on VOCs sorption in an environmental chamber are used to validate the present model and a good agreement has been obtained. Two cases of different inlet concentrations are discussed in detail. The patterns of the concentration distribution in the air vary with the inlet concentration. The influences of model parameters have been investigated. With the increase of the diffusion coefficient and the partition coefficient, the rate of the adsorption increases. Relatively, the partition coefficient plays a more important role in the sorption than the diffusion coefficient.  相似文献   

16.
Multi-scale analysis using the asymptotic homogenization method is becoming a matter of concern for microstructural design and analysis of advanced heterogeneous materials. One of the problems is the lack of the experimental verification of the multi-scale analysis. Hence, it is applied to the porous alumina with needle-like pores to compare the predicted homogenized properties with the experimental result. The complex and random microstructure was modeled three-dimensionally with the help of the digital image-based modeling technique. An appropriate size of the unit microstructure model was investigated. The predicted elastic properties agreed quite well with the measured values. Next, a four-point bending test was simulated and finally the microscopic stress distribution was predicted. However, it was very hard to evaluate the calculated microscopic stress quantitatively. Therefore, a numerical algorithm to help understanding the three-dimensional and complex stress distribution in the random porous microstructure is proposed. An original histogram display of the stress distribution is shown to be effective to evaluate the stress concentration in the porous materials.  相似文献   

17.
An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.  相似文献   

18.
19.
In this work we propose to study the behavior of cellular materials using a second-order multi-scale computational homogenization approach. During the macroscopic loading, micro-buckling of thin components, such as cell walls or cell struts, can occur. Even if the behavior of the materials of which the micro-structure is made remains elliptic, the homogenized behavior can lose its ellipticity. In that case, a localization band is formed and propagates at the macro-scale. When the localization occurs, the assumption of local action in the standard approach, for which the stress state on a material point depends only on the strain state at that point, is no-longer suitable, which motivates the use of the second-order multi-scale computational homogenization scheme. At the macro-scale of this scheme, the discontinuous Galerkin method is chosen to solve the Mindlin strain gradient continuum. At the microscopic scale, the classical finite element resolutions of representative volume elements are considered. Since the meshes generated from cellular materials exhibit voids on the boundaries and are not conforming in general, the periodic boundary conditions are reformulated and are enforced by a polynomial interpolation method. With the presence of instability phenomena at both scales, the arc-length path following technique is adopted to solve both macroscopic and microscopic problems.  相似文献   

20.
An algorithm is presented for solving the Stokes equation in large disordered two‐dimensional porous domains. In this work, it is applied to random packings of discs, but the geometry can be essentially arbitrary. The approach includes the subdivision of the domain and a subsequent application of boundary integral equations to the subdomains. This gives a block diagonal matrix with sparse off‐block components that arise from shared variables on internal subdomain boundaries. The global problem is solved using a biconjugate gradient routine with preconditioning. Results show that the effectiveness of the preconditioner is strongly affected by the subdomain structure, from which a methodology is proposed for the domain decomposition step. A minimum is observed in the solution time versus subdomain size, which is governed by the time required for preconditioning, the time for vector multiplications in the biconjugate gradient routine, the iterative convergence rate and issues related to memory allocation. The method is demonstrated on various domains including a random 1000‐particle domain. The solution can be used for efficient recovery of point velocities, which is discussed in the context of stochastic modelling of solute transport. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号