首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tyre design consisting of a steel-cord-reinforced rigid bond with sides connected to the wheel disc and a protector(tread) in contact with the road is examined. The tread is in the form of a set of rods connected by one end to the band, with the other end either free or in contact with the road. The rod end in contact with the road is acted upon by a force applied from the road, represented by a force normal to the road plane and a shear force due to dry friction. If the modulus of the shear force does not exceed the magnitude of the normal force multiplied by the dry friction coefficient, there is no slip at the contact point. In the opposite case, the rod end will be displaced along the road by an amount sufficient to distribute the normal and shear forces. The dynamics of longitudinal and transverse strains of the rods in contact with the road is analysed using the motion separation method in the quasi-static approximation. The behaviour of the tread rods as a function of the vertical displacement of the wheel centre is investigated, the contact area is found and the conditions are determined under which the contact area is divided into parts in which either slip of the rod ends occurs or does not occur, depending on the magnitude of the longitudinal displacement of the wheel centre or its turning relative to the horizontal axis. An analogue of a continuous model of a rod-like tread is considered, and the magnitudes of the forces and moments are found as a function of the wheel disc displacements. The equations of wheel rolling are obtained, and the conditions under which steady motions exist are found.  相似文献   

2.
A heavy balanced nonhomogeneous ball moving on a rough horizontal plane is considered. The classical model of a “marble” body means a single point of contact, where sliding is impossible. We suggest that the contact forces be described by Coulomb’s law and show that in the final motion there is no sliding. Another, relatively new, contact model is the “rubber” ball: there is no sliding and no spinning. We treat this situation by applying a local Coulomb law within a small contact area. It is proved that the final motion of a ball with such friction is the motion of the “rubber” ball.  相似文献   

3.
The problem of the motion of a rigid body possessing a plane of symmetry over the surface of a three-dimensional sphere under the action of a spherical analogue of Newtonian gravitation forces is considered. Approaches to introducing spherical analogues of the concepts of centre of mass and centre of gravity are discussed. The spherical analogue of “satellite approach” in the problem of the motion of a rigid body in a central field, which arises on the assumption that the dimensions of the body are small compared with the distance to the gravitating centre, is studied. Within the framework of satellite approach, assuming plane motion of the body, the question of the existence and stability of steady motions is investigated. A spherical analogue of the equation of the plane oscillations of a body in an elliptic orbit is derived.  相似文献   

4.
The rolling of a railway wheelset along rails without slipping is investigated taking the creep hypothesis into account. The wheelset is represented by two cones that have a common base, and the rails are represented by two circular cylinders with parallel axes. The kinematic characteristics of the unperturbed rolling motion of the wheelset, which occurs when the centre of mass moves along a straight line, and of the perturbed motion, which occurs when the centre of mass of the wheelset describes a sinusoidal trajectory, are determined. The constraint reactions are found for the motions investigated up to small second-order values of the perturbed variables. When the elastic properties of the material in the contact area are taken into account, the creep hypothesis is used, averaging over the fast variables is employed, and the value of the critical speed, above which the rectilinear rolling of the wheelset becomes unstable, is found using averaged equations. In the latter case a periodic mode with two time intervals when the wheel flanges come into contact with the rails is investigated. The reaction force, the work of the dry friction force, and the moment of the active forces needed to maintain the periodic mode are found at the flange/rail contact point within the dry friction model. The boundaries of the stability regions, the parameters of the periodic mode and the moment of the resistance forces as functions of the problem parameters are determined from the formulae obtained by analytical methods.  相似文献   

5.
A model of a wheel with a reinforced tyre, whose surface is simulated by a flexible strip (tread) attached to parts of two tori (the sidewalls of the tyre) is considered. The disk of the wheel (a rigid body) has six degrees of freedom and is in contact with the plane along part of the tread. Based on several assumptions, the potential energy functional of the deformed wheel is found as a function of the deformations of the centre line of the tread. On the assumption that the wheel is rolling without slip in the region of contact of the tread with the plane along a previously unknown section of the tread, the complete system of equations of motion is obtained. The equilibrium of the wheel and the steady state of rolling in a straight line with given swivel and tilt are investigated, and all characteristics of the motion are found (the contact region, the tyre deformation, and the forces and torques applied to the wheel disk).  相似文献   

6.
A model of a pneumatic tyre as a system with an infinite number of degrees of freedom is proposed, when its surface is represented by the deformed surface of a torus. Using a number of hypotheses a functional of the potential energy of the deformations of the tyre is obtained as a function of the deformations of its tread. A complete system of equations of motion is obtained, assuming that the wheel rolls without slipping in the area of contact of the tread with the plane, with respect to the previously unknown part of the tread. In two special cases of the rolling of a wheel with breakaway and on a banking, all the characteristics of the motion (the contact area, the tyre deformation, and the forces and moments applied to the disc of the wheel) are obtained.  相似文献   

7.
Calculations are presented of the indentation of a spherical punch into an ideally plastic half-space under condition of complete plasticity and taking account of contact friction, which is modelled according to Prandtl and Coulomb. Friction leads to the formation of a rigid zone at the centre of the punch when there is slipping of the material on the remaining part of the contact boundary. Limit values of the friction coefficients are obtained for which the rigid zone extends over the whole of the contact boundary. The dependence of the indentation force on the radius of the plastic area is in good agreement with experimental data.  相似文献   

8.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

9.
We consider dynamical problems arising in connection with the interaction of an absolutely rigid ball and a viscoelastic support plane. The support is a relatively stiff viscoelastic Kelvin-Voigt medium that coincides with the horizontal plane in the undeformed state. We also assume that under the deformation the support induces dry friction forces that are locally governed by the Coulomb law. We study the impact appearing when a ball falls on the plane. Another problem of our interest is the motion of a ball “along the plane.” A detailed analysis of various stages of the motion is presented. We also compare this model with classical models of interaction of solid bodies.  相似文献   

10.
The motion of a heavy sphere on a fixed horizontal plane is considered. It is assumed that the centre of mass of the sphere is at its geometric centre, while the principal central moments are different (Chaplygin's sphere). Using the method of averaging, the motion of the sphere is investigated under slip conditions when there is low viscous and also low dry friction. It is shown that when the sphere moves with viscous friction it tends, for the majority of initial data, to rotate about the longest of the axes of the principal central moments of inertia. The motion of the sphere centre tends to become uniform so that the slip velocity approaches zero exponentially. A system of averaged equations, which is fully integrable, is obtained in the case of almost equal moments of inertia, when the friction is dry. The solutions are analyzed.  相似文献   

11.
In this paper we investigate two systems consisting of a spherical shell rolling without slipping on a plane and a moving rigid body fixed inside the shell by means of two different mechanisms. In the former case the rigid body is attached to the center of the ball on a spherical hinge. We show an isomorphism between the equations of motion for the inner body with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by means of a nonholonomic hinge. Equations of motion for this system have been obtained and new integrable cases found. A special feature of the set of tensor invariants of this system is that it leads to the Euler — Jacobi — Lie theorem, which is a new integration mechanism in nonholonomic mechanics. We also consider the problem of free motion of a bundle of two bodies connected by means of a nonholonomic hinge. For this system, integrable cases and various tensor invariants are found.  相似文献   

12.
The problem of the motion of a homogeneous circular cylinder along a fixed rough inclined plane is discussed. It is assumed that the cylinder is supported on the plane by its base and executes continuous motion. The frictional forces and moment are calculated within the limits of the dynamically consistent model proposed by Ivanov, for which the pressure distribution over the contact area is non-uniform. A qualitative analysis of the dynamics of the cylinder is given in the case when the slope of the plane is less then the Coulomb coefficient of friction.  相似文献   

13.
The motion of a mobile three-wheel robotic vehicle on a horizontal surface is investigated. Passive rollers are fastened along the rim of each wheel, enabling each wheel not only to roll in the usual manner, but also to move perpendicular to its plane. Each of these wheels, as well as the ordinary wheels, is equipped with one drive, which rotates the wheel about its axis. The vehicle equipped with roller-carrying wheels can move in any direction with any orientation. The motion of the robot on a horizontal surface is studied in the case where the centre of mass of the robot deviates from the geometric centre of the triangular platform, and there is no slip at the points of contact of the rollers with the supporting surface. In the case of free motion of the robot, an additional first integral is pointed out and the exact solution found is analysed. An equation for specifying steady motions, under which a constant voltage is supplied to the DC motors that drive the wheels, is constructed. The stability of the rectilinear motion of the robot is investigated.  相似文献   

14.
The motion of a spherical pendulum whose point of suspension performs high-frequency vertical harmonic oscillations of small amplitude is investigated. It is shown that two types of motion of the pendulum exist when it performs high-frequency oscillations close to conical motions, for which the pendulum makes a constant angle with the vertical and rotates around it with constant angular velocity. For the motions of the first and second types the centre of gravity of the pendulum is situated below and above the point of suspension, respectively. A bifurcation curve is obtained, which divides the plane of the parameters of the problem into two regions. In one of these only the first type of motion can exist, while in the other, in addition to the first type of motion, there are two motions of the second type. The problem of the stability of these motion of the pendulum, close to conical, is solved. It is shown that the first type of motion is stable, while of the second type of motion, only the motion with the higher position of the centre of gravity is stable.  相似文献   

15.
The following unilateral problem is considered. An elastic half-sphere is supported, without friction, by a rigid plane in possible contact with its base. The spherical portion of the surface is loaded by tractions statically equivalent to a compressive load perpendicular to the supporting plane.Superposing certain classical solutions of three-dimensional elasticity, it is possible to determine all such distributions of surface tractions for which the half-sphere makes contact along only half of its base.  相似文献   

16.
The problem of determining dry friction forces in the case of the motion of a rigid body with a plane base over a rough surface is discussed. In view of the dependence of the friction forces on the normal load, the solution of this problem involves constructing a model of the contact stresses. The contact conditions impose three independent constraints on the kinematic characteristics, and the model must therefore include three free parameters, which are determined from these conditions at each instant. When the body is supported at three points, these parameters (for which the normal stresses can be taken) completely determine the model, while indeterminacy arises in the case of a larger number of contact points and, in order to remove this, certain physical hypotheses have to be accepted. It is shown that contact models consistent with the dynamics possess certain new qualitative properties compared with the traditional quasi-static models in which the type of motion of the body is not taken into account. In particular, a dependence of the principal vector and principal moment of the friction forces on the direction of sliding or pivoting of the body, as well as on the magnitude of the angular velocity, is possible.  相似文献   

17.
The plane contact problem of elasticity theory on the interaction when there are friction forces in the contact area of an absolutely rigid cylinder (punch) with an internal surface of a cylindrical base, consisting of two circular cylindrical layers rigidly connected to one another and with an elastic space, is considered. The layers and space have different elastic constants. A vertical force and a counterclockwise torque, act on the punch, and the punch – base system is in a state of limiting equilibrium,. An exact integral equation of the first kind with a kernel represented in an explicit analytical form, is obtained for the first time for this problem using analytical calculation programs. The main properties of the kernel of the integral equation are investigated, and it is shown that the numerator and denominator of the kernel symbols can be represented in the form of polynomials in products of the powers of the moduli of the displacement of the layers and the half-space. A solution of the integral equation is constructed by the direct collocation method, which enables the solution of the problem to be obtained for practically any values of the initial parameters. The contact stress distributions, the dimensions of the contact area, the interconnection between the punch displacement and the forces and torques acting on it are calculated as a function of the geometrical and mechanical parameters of the layers and the space. The results of the calculations in special cases are compared with previously known results.  相似文献   

18.
The characteristic features of the high-velocity motion of conical and pyramidal bodies are investigated when the force acting on their surface is described by a local interaction model. It is assumed that the pressure on the body surface is represented by a binomial formula that is quadratic in the velocity. Three friction models are used to represent the tangential stresses: constant friction, friction that is proportional to the pressure and mixed friction. Analytical solutions of problems of the plane inertial motion of slender bodies with a base contour in the form of a circle, a rhombus or a star consisting of four cycles are constructed for an unseparated flow past the bodies and small perturbations imposed on the parameters of the linear motion at the initial instant of time. A criterion for the stability of the motion is found that enables the perturbed motion of the body to be determined when the medium parameters and the velocity, mass and shape of the body are known. The analytical results are validated by a numerical solution of the Cauchy problem for a system of equations of motion obtained without simplifying assumptions.  相似文献   

19.
The motion of a vertical disc along a curve under the influence of gravity is investigated. On the assumption of regular rolling without slip and separation of contact points, the problem of plotting the curve of most rapid motion of the disc centre from the origin of coordinates to an arbitrary fixed point of the lower half-plane is solved. As usual, the velocity at the initial instant of time is zero, and at the final instant of time it is not fixed. In explicit parametric form, the classical brachistochrone for contact points of the disc is plotted and investigated. The response time, trajectory and kinematic and dynamic characteristics of motion are calculated analytically. Previously unknown qualitative properties of regular rolling are established. In particular, it is shown that the disc centre moves along a cycloid connecting specified points. The envelopes of the boundary points of the disc, produced as its centre moves along the cycloid, are brachistochrones. The feasibility of mechanical coupling of the disc and the curve by reaction forces at the contact point (the normal pressure and dry friction) is investigated.  相似文献   

20.
The plane contact problem of the sliding without friction of a rigid cylinder over a viscoelastic half-space when there is adhesion is solved, neglecting the inertial properties of the half-space. The distribution of the contact pressure, the size and position of the contact area, and the deformation force of resistance to motion of the cylinder are investigated as a function of the adhesion properties of the surfaces, the mechanical characteristics of the half-space and the sliding velocity of the cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号