首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The influence of localized imperfections on the buckling of a long cylindrical shell under axial compression is analysed by using a double scale analysis including interaction modes. This leads to a system of coupled complex non-linear differential equations with discontinuous derivatives. We propose analytical formulas to predict the reduction of the critical buckling load.  相似文献   

2.
Circular cylindrical shells conveying incompressible flow are addressed in this study; they lose stability by divergence when the flow velocity reaches a critical value. The divergence is strongly subcritical, becoming supercritical for larger amplitudes. Therefore the shell, if perturbed from the initial configuration, has severe deformations causing failure much before the critical velocity predicted by the linear threshold. Both Donnell's non-linear theory retaining in-plane displacements and the Sanders-Koiter non-linear theory are used for the shell. The fluid is modelled by potential flow theory but the effect of steady viscous forces is taken into account. Geometric imperfections are introduced and fully studied. Non-classical boundary conditions are used to simulate the conditions of experimental tests in a water tunnel. Comparison of numerical and experimental results is performed.  相似文献   

3.
Circularcylindrical shells are frequently used as structural components because of their high strength and their ability to absorb energy during complete structural collapse. Total collapse analyses have mainly been based on experimental work and approaches inspired by this. However, in the last few years, powerful numerical tools have been available and numerical collapse analyses have become more attractive. This paper presents results from an axisymmetric numerical collapse analysis. The analysis is based on a finite rotation shell theory accounting for contact between the shell walls. The strains are assumed to remain small and the shell material is described by an elastic–viscoplastic model. The sensitivity of the collapse behaviour is demonstrated with respect to parameters such as initial imperfections, thickness of the shell, material parameters and rate of deformation. Comparisons between the results numerically obtained and approaches found in the literature are presented. Good agreement was found for the folding length of the developed collapse pattern whereas small differences between the mean crushing loads was observed. Furthermore, it was noted that the developed collapse pattern was strongly dependent on the strain hardening of the material.  相似文献   

4.
5.
In the present investigation on the dynamic plastic buckling of cylindrical shells under axial compression waves, the critical axial stress and the exponential parameter of inertia terms in stability equations are treated as a couple of characteristic parameters. The criterion of transformation and conservation of energy in the process of buckling initiation is used to derive the supplementary restraint equation of buckling deformation at the fronts of axial elastic and plastic compression waves. The supplementary restraint equation, stability equations, boundary conditions and continuity conditions constitute the necessary and sufficient conditions of determining the two characteristic parameters. Two characteristic equations are derived for the two characteristic parameters. The critical axial stress or the critical buckling time, the exponential parameter of inertia terms and the initial modes of buckling deformation are calculated quantitatively from the solution of the characteristic equations.  相似文献   

6.
7.
8.
Summary The response of a thin cylindrical shell of elastic-viscoplastic material to internal pressure is considered. Small displacements and the validity of the kinematical Love-Kirchhoff-hypothesis are presupposed. Further it is assumed that the inelastic behavior of the shell material is governed by a unified constitutive model with internal state variables, where the total strain tensor can be decomposed additively into an elastic and an inelastic part. Under these assumptions the governing differential equation for the radial displacement is derived. A general solution is obtained by the method of variation of parameters and adjusted to different boundary conditions.Solution of inelastic problems requires tracing of the entire loading path which leads to an initial value problem. This initial value problem is formulated for Hart's constitutive model and solved numerically by an implicit time integration procedure. Finally numerical results are presented.
Inelastische Deformation dünner Kreiszylinderschalen bei axialsymmetrischer Belastung
Übersicht Es wird die Reaktion einer dünnen Kreiszylinderschale aus elastisch-viskoplastischem Werkstoff auf eine Belastung durch Innendruck untersucht. Es werden kleine Verschiebungen und die Gültigkeit der kinematischen Hypothese von Love-Kirchhoff vorausgesetzt. Ferner wird angenommen, daß das inelastische Verhalten des Werkstoffs durch ein einheitliches konstitutives Gesetz mit inneren Zustandsvariablen beschrieben wird, wobei der Tensor der Gesamtverzerrungen additiv in einen elastischen und einen inelastischen Anteil aufgespalten werden kann. Unter diesen Voraussetzungen wird die Differentialgleichung für die Radialverschiebung abgeleitet. Für sie wird eine allgemeine Lösung mittels Variation der Konstanten ermittelt und an verschiedene Randbedingungen angepaßt.Bei der Lösung inelastischer Probleme muß der gesamte Belastungspfad verfolgt werden. Dies führt auf ein Anfangswertproblem. Dieses Anfangswertproblem wird für das Werkstoffgesetz von Hart formuliert und numerisch mittels eines impliziten Zeitintegrationsverfahrens gelöst. Abschließend werden numerische Ergebnisse vorgestellt.
  相似文献   

9.
Design formulas for calculating the critical stresses of unreinforced and reinforced cylindrical shells in axial compression are derived by analyzing experimental data. The curves obtained with the formulas bound the experimental data from below. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 11, pp. 75–78, November, 1999.  相似文献   

10.
11.
12.
13.
Buckling analysis of cylindrical shells with random geometric imperfections   总被引:2,自引:0,他引:2  
In this paper the effect of random geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under deterministic axial compression is presented. Therefore, a concept for the numerical prediction of the large scatter in the limit load observed in experiments using direct Monte Carlo simulation technique in context with the Finite Element method is introduced. Geometric imperfections are modeled as a two dimensional, Gaussian stochastic process with prescribed second moment characteristics based on a data bank of measured imperfections. (The initial imperfection data bank at the Delft University of Technology, Part 1. Technical Report LR-290, Department of Aerospace Engineering, Delft University of Technology). In order to generate realizations of geometric imperfections, the estimated covariance kernel is decomposed into an orthogonal series in terms of eigenfunctions with corresponding uncorrelated Gaussian random variables, known as the Karhunen-Loéve expansion. For the determination of the limit load a geometrically non-linear static analysis is carried out using the general purpose code STAGS (STructural Analysis of General Shells, user manual, LMSC P032594, version 3.0, Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA). As a result of the direct Monte Carlo simulation, second moment characteristics of the limit load are presented. The numerically predicted statistics of the limit load coincide reasonably well with the actual observations, particularly in view of the limited data available, which is reflected in the statistical estimators.  相似文献   

14.
Stability analysis of noncircular shells is performed with allowance for nonlinear subcritical deformation. Explicit expressions for the rigid displacements of elements of noncircular cylindrical shells are obtained and used to construct shape functions of an effective quadrilateral finite element of natural curvature. A finiteelement algorithm for solving problems of nonlinear deformation and stability of shells is developed. Stability problem of an elliptic cylindrical shell is considered. The effect of the ellipticity and subcritical nonlinear deformation of the shell on the critical load is studied. Results obtained are compared with available experimental data.  相似文献   

15.
16.
17.
Buckling and postbuckling behaviors of perfect and imperfect,stringer andorthotropically stiffened cylindrical shells have been studied under axial compression.Based on the boundary layer theory for the buckling of thin elastic shells suggested in ref.[1],a theoretical analysis is presented.The effects of material properties of stiffeners andskin,which are made of different materials,on the buckling load and postbuckling behaviorof stiffened cylindrical shells have also been discussed.  相似文献   

18.
Buckling behaviors of axially compressed functionally graded cylindrical shells with geometrical imperfections are investigated in this paper using Donnell shell theory and the nonlinear strain-displacement relations of large deformation. The analysis is based on the nonlinear prebuckling consistent theory. Both the prebuckling effects and the temperature-dependent material properties are taken into account. The buckling condition for imperfect functionally graded cylindrical shells is obtained by using the Galerkin method. Numerical results show various effects of imperfection, structural type, power law exponent, temperature and dimensional parameters on buckling. The present theoretical results are verified by those in literature.  相似文献   

19.
20.
The stability of noncircular shells, in contrast to that of circular ones, has not been studied sufficiently well yet. The publications about circular shells are counted by thousands, but there are only several dozens of papers dealing with noncircular shells. This can be explained on the one hand by the fact that such shells are less used in practice and on the other hand by the difficulties encountered when solving problems involving a nonconstant curvature radius, which results in the appearance of variable coefficients in the stability equations. The well-known solutions of stability problems were obtained by analytic methods and, as a rule, in the linear approximation without taking into account the moments and nonlinearity of the shell precritical state, i.e., in the classical approximation. Here we use the finite element method in displacements to solve the problem of geometrically nonlinear deformation and stability of cylindrical shells with noncircular contour of the transverse cross-section. We use quadrilateral finite elements of shells of natural curvature. In the approximations to the element displacements, we explicitly distinguish the displacements of elements as rigid bodies. We use the Lagrange variational principle to obtain a nonlinear system of algebraic equations for determining the unknown nodal finite elements. We solve the system by a step method with respect to the load using the Newton-Kantorovich linearization at each step. The linear systems are solved by the Kraut method. The critical loads are determined with the use of the Silvester stability criterion when solving the nonlinear problem. We develop an algorithm for solving the problem numerically on personal computers. We also study the nonlinear deformation and stability of shells with oval and elliptic transverse cross-section in a wide range of variations in the ovalization and ellipticity parameters. We find the critical loads and the shell buckling modes. We also examine how the critical loads are affected by the strain nonlinearity and the ovalization and ellipticity of shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号