首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate and efficient grid based techniques for the solution of the time-dependent Schrödinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H2 + with fixed internuclear separation, H2 + with vibrating nuclei and H2 with fixed internuclear separation and illustrative results presented.Received: 19 November 2002, Published online: 24 April 2003PACS: 02.60.Cb Numerical simulation; solution of equations - 02.70.Bf Finite-difference methods - 33.80.Rv Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 33.80.-b Photon interactions with molecules  相似文献   

2.
We investigate the ionization of icosahedral fullerenes (C20, C60, C80, and C180) in an intense laser pulse using the S-matrix theory. The results obtained are in excellent agreement with the recent observations of unexpectedly high saturation intensities of the Buckminster fullerene and its multiply charged ions. Our analysis strongly suggests that the related phenomenon of suppressed ionization of these complex fullerenes is due to the finite cage size and the "multislit" interference effect between partial waves emitted from the different nuclei rather than to a dynamical multielectron polarization effect.  相似文献   

3.
4.
全威  柳晓军  陈京 《物理》2015,44(1):22-28
强场电离是超快强激光与物质相互作用时发生的基本物理过程。强场驱动原子分子的电离电子动力学过程发生在一个光学振荡周期以内,是在阿秒时间尺度上研究电子超快动力学的典范。不仅如此,强场驱动下的超短电子束还为探测原子分子的结构及其超快动力学提供了重要的技术手段。文章首先简要阐述了超快强光场中原子分子电离的基本物理图像,在此基础上,介绍了近年来基于强场电离电子开展的超快过程研究的几个例子,最后简要讨论了强场电离研究的未来可能发展方向。  相似文献   

5.
利用Coulomb-Volkov方法研究了H原子在不同波长的线性极化强激光场中电离的能量谱和动量谱,并与强场近似和直接数值求解含时Schr(o|¨)dinger方程的结果进行比较,结果发现:随着激光频率的增加,由Coulomb-Volkov方法得到的结果与数值求解含时Schr(o|¨)dinger方程的结果符合得很好.  相似文献   

6.
利用传统的强场近似方法和考虑Coulomb修正的强场近似方法,计算了H原子在激光场中的总电离几率及H原子在不同波长激光场中电离的能量谱,并将得到的能量谱与直接数值求解含时Schrödinger方程的结果进行了比较,结果发现:当激光波长较长时,考虑Coulomb 修正的强场近似方法得到的结果与数值求解含时Schrödinger方程的结果符合得较好。  相似文献   

7.
8.
9.
The multiphoton ionization of H2 has been studied using laser pulses of 266 nm wavelength, 250 fs duration, and 5x10(13) W/cm(2) peak intensity. Dissociation of H2(+) via one-photon absorption proceeds through two channels with markedly different proton angular distributions. The lower-energy channel (2.6 eV kinetic energy release) is produced in the bond softening mechanism, which generates parallel alignment. The higher-energy channel (3.5 eV) originates from population trapping in a light-induced bound state, where bond hardening generates orthogonal, counterintuitive alignment.  相似文献   

10.
11.
We report on the experimental realization of time-resolved coincident Coulomb explosion imaging of H2 fragmentation in 10(14) W/cm(2) laser fields. Combining a high-resolution "reaction microscope" and a fs pump-probe setup, we map the motion of wave packets dissociating via one- or two-photon channels, respectively, and observe a new region of enhanced ionization. The long-term interferometric stability of our system allows us to extend pump-probe experiments into the region of overlapping pulses, which offers new possibilities for the manipulation of ultrafast molecular fragmentation dynamics.  相似文献   

12.
We have measured momentum spectra and branching ratios of charged ionic fragments emitted in the double ionization of D2 (and H2) molecules by short intense laser pulses. We find high-energy coincident D+ (and H+) ion pairs with kinetic energy releases between 8 and 19 eV which appear for linearly polarized light but are absent for circularly polarized light. The dependence on the polarization, the energy distributions of the ions, and the dependence on laser intensity of yield ratios lead us to interpret these ion pairs as due to a rescattering mechanism for the double ionization. A quantitative model is presented which accounts for the major features of the data.  相似文献   

13.
14.
15.
The peculiarities of antisymmetric molecular orbitals are investigated in very intense linearly polarized laser pulses. For this purpose, the ionization-recollision quantum dynamics is evaluated theoretically beyond the dipole approximation. As opposed to the usual situation, the laser magnetic field component is found to strongly enhance recollision probabilities for particularly oriented antisymmetric molecular orbitals. Harmonic generation and related processes are thus allowed at high laser intensities without the common limitations by the laser magnetic field.  相似文献   

16.
17.
We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of the electrons ionized via excitation with the increasing laser intensity. These electrons generally have small energy thus they concentratedly distribute on the central region of the momentum diagram. Consequently, the central part of the momentum diagram becomes more notable in higher intensity laser fields. Further study suggests that this phenomenon is general in double ionization.  相似文献   

18.
19.
Nonlinear, three-photon double excitation of He in intense extreme ultraviolet free-electron laser fields (~24.1 eV, ~5 TW/cm2) is presented. Resonances to the doubly excited states converging to the He+ N=3 level are revealed by the shot-by-shot photoelectron spectroscopy and identified by theoretical calculations based on the time-dependent Schr?dinger equation for the two-electron atom under a laser field. It is shown that the three-photon double excitation is enhanced by intermediate Rydberg states below the first ionization threshold, giving a greater contribution to the photoionization yields than the two-photon process by more than 1 order of magnitude.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号