首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transient photocurrent model is used to explain terahertz emission from gas plasma irradiated by a laser pulse and the second harmonic. By introducing the second harmonic, 400 nm, the corresponding terahertz emission is greatly enhanced. The exact dependence of terahertz emission on the intensity ratio of 400–800 nm is studied for the case with total intensity of 5.00 × 1014 W/cm2. Results show the emission reaches the maximum at about the case for energy distribution of Iω = 4.00 × 1014 W/cm2, I2ω = 1.00 × 1014 W/cm2.  相似文献   

2.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

3.
We have investigated the structural and optical properties of bulk GaTe crystal grown by vertical Bridgman method. Two photon absorption (TPA) properties of GaTe crystal have been investigated by the open aperture Z-scan technique under 1064 nm wavelength with 4 ns or 65 ps pulse durations. The TPA coefficients are greater in ns regime than that of ps regime. Upon increasing intensity of incident light from 5.02×107 W/cm2 to 1.07×108 W/cm2, the TPA coefficients increased from 3.47×10?6 cm/W to 8.53×10?6 cm/W for nanosecond excitation. Similarly, when intensity of incident light was increased from 6.81×108 W/cm2 to 9.94×108 W/cm2 the TPA coefficients increased from 3.53×10?7 cm/W to 6.83×10?7 cm/W for picosecond excitation. Measured TPA coefficient of GaTe crystal is larger than that of GaSe and GaS layered crystals.  相似文献   

4.
Photodiodes of InSb were fabricated on an epitaxial layer grown using molecular beam epitaxy (MBE). Thermal cleaning of the InSb (0 0 1) substrate surface, 2° towards the (1 1 1) B plane, was performed to remove the oxide. Photodiode properties of МВЕ-formed epitaxial InSb were demonstrated. Zero-bias resistance area product (R0A) measurements were taken at 80 K under room temperature background for a pixel size of 100 μm × 100 μm. Values were as high as 4.36 × 104 Ω/cm2, and the average value of R0A was 1.66 × 104 Ω/cm2. The peak response was 2.44 (A/W). The epitaxial InSb photodiodes were fabricated using the same process as bulk crystal InSb diodes with the exception of the junction formation method. These values are comparable to the properties of bulk crystal InSb photodiodes.  相似文献   

5.
Xianghe Ren  Lihua Bai 《Optik》2012,123(11):978-981
We theoretically study the influence of the internuclear vector on molecular ionization in linear polarization laser fields through taking O2, CO2 as model molecules. We find that the ionization rates of O2 and CO2 depend on the molecular orientations. For O2, the molecular orientation corresponding to the maximum ionization rate is about φm = 45°, which is independent of the laser intensity; while for CO2, this kind of molecular orientation varies with laser intensity. We also find the ionization suppression of molecule depends on the molecular orientations and the internuclear distance. The ionization suppression easily disappears for molecules with larger internuclear distance.  相似文献   

6.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

7.
Currently several therapeutic applications of ultrasound in cancer treatment are under progress which uses cavitation phenomena to deliver their effects. There are several methods to evaluate cavitation activity such as chemical dosimetry and measurement of subharmonic signals. In this study, the cavitation activity induced by the ultrasound irradiation on exposure parameters has been measured by terephthalic acid chemical dosimetry and subharmonic analysis. Experiments were performed in the near 1 MHz fields in the progressive wave mode and effect of duty cycles changes with 2 W/cm2 intensity (ISATA) and acoustic intensity changes in continuous mode on both fluorescence intensity and subharmonic intensity were measured. The dependence between fluorescence intensity of terephthalic acid chemical dosimetry and subharmonic intensity analysis were analyzed by Pearson correlation (p-value < 0.05). It has been shown that the subharmonic intensity and the fluorescence intensity for continuous mode is higher than for pulsing mode (p-value < 0.05). Also results show that there is a significant difference between the subharmonic intensity and the fluorescence intensity with sonication intensity (p-value < 0.05). A significant correlation between the fluorescence intensity and subharmonic intensity at different duty cycles (R = 0.997, p-value < 0.05) and different intensities (R = 0.985, p-value < 0.05) were shown. The subharmonic intensity (μW/cm2) significantly correlated with the fluorescence intensity (count) (R = 0.901; p < 0.05) and the fluorescence intensity due to chemical dosimetry could be estimated with subharmonic intensity due to subharmonic spectrum analysis. It is concluded that there is dependence between terephthalic acid chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation activity.  相似文献   

8.
High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH׳s) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm−2 and Fth=0.15±0.01 J cm−2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s−1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH׳s switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.  相似文献   

9.
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R0A are 8.89 pA (2.2 × 10−8 A/cm2) and 3.9 × 105 Ω cm2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 1012 cm Hz1/2 W−1 at 1.06 μm wavelength. Comparing to the reference In0.53Ga0.47As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.  相似文献   

10.
The Zn/Er/Yb:LiNbO3 and Er/Yb:LiNbO3 crystals were grown by the Czochralski technique. The laser characteristics of 1.54 μm emission were predicted based on the Judd–Ofelt theory, and the intensity parameters Ωt (Ω2=7.23×10?20 cm2, Ω4=3.15×10?20 cm2 and Ω6=1.43×10?20 cm2) were obtained. The stimulated emission cross sections (σem) at 1.54 μm emission in Zn/Er/Yb:LiNbO3 were calculated based on the McCumber theory and the Füchtbauer–Ladenburg theory. The gain cross section spectrum of Zn/Er/Yb:LiNbO3 crystal was also investigated. Under 980 nm excitation, a lenghthening lifetime of 1.54 μm emission and an enhancement of green upconversion emission were observed for Zn/Er/Yb:LiNbO3 crystal. The studies on the power pump dependence and the upconversion mechanism suggested that both green and red upconversion emissions were populated via the three-photon process, and Zn2+ ion tridoping increases the probability of cross relaxation process between the two neighboring Er3+ ions.  相似文献   

11.
In this paper, we present an InAs/GaSb type-II superlattice (SL) with the M-structure for the fabrication of a long-wavelength (10 μm range) infrared (LWIR) focal plane arrays (FPA), which are grown by molecular beam epitaxy (MBE). The M-structure is named for the shape of the band alignment while the AlSb layer is inserted into the GaSb layer of InAs/GaSb SL. A 320 × 256 LWIR FPA has been fabricated with low surface leakage and high R0A product of FPA pixels by using anodic sulfide and SiO2 physical passivation. Experiment results show that the devices passivated with anodic sulfide obviously have higher R0A than the un-sulphurized one. The 50% cutoff wavelength of the LWIR FPA is 9.1 μm, and the R0A is 224 Ω cm2 with the average detectivity of 2.3 × 1010 cm Hz1/2 W−1.  相似文献   

12.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

13.
Results of modeled photodetector characteristics in (CdS/ZnSe)/BeTe multi-well diode with p–i–n polarity are reported. The dark current density (JV) characteristics, the temperature dependence of zero-bias resistance area product (R0A), the dynamic resistance as well as bias dependent dynamic resistance (Rd) and have been analyzed to investigate the mechanisms limiting the electrical performance of the modeled photodetectors. The quantum efficiency, the responsivity and the detectivity have been also studied as function of the operating wavelength. The suitability of the modeled photodetector is demonstrated by its feasibility of achieving good device performance near room temperature operating at 1.55 μm wavelength required for photodetection in optical communication. Quantum efficiency of ∼95%, responsivity ∼0.6 A/W and D*  5.7 × 1010 cm Hz1/2/W have been achieved at 300 K in X BeTe conduction band minimum.  相似文献   

14.
Using double heterojunction structure with linearly graded InxAl1–xAs as buffer layer and In0.9Al0.1As as cap layer, wavelength extended In0.9Ga0.1As detectors with cutoff wavelength of 2.88 μm at room temperature have been grown by using gas source molecular beam epitaxy, their characteristics have been investigated in detail and compared with the detectors cutoff at 2.4 μm with similar structure as well as commercial InAs detectors. Typical resistance area product R0A of the detectors reaches 3.2 Ω cm2 at 290 K. Measured peak detectivity reaches 6.6E9 cm Hz1/2/W at room temperature.  相似文献   

15.
Continuous-time photoelectron spectroscopy (PES) and continuous-time core-level photon-stimulated desorption (PSD) spectroscopy were used to study the monochromatic soft X-ray-induced reactions of CCl2F2 molecules adsorbed on Si(111)-7 × 7 at 30 K (CCl2F2 dose = 2.0 × 1014 molecules/cm2, ~ 0.75 monolayer) near the Si(2p) core level. Evolution of adsorbed CCl2F2 molecules was monitored by using continuous-time photoelectron spectroscopy at two photon energies of 98 and 120 eV to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~1.4 × 10? 18 and ~ 8.0 × 10? 18 cm2, respectively. Sequential F+ PSD spectra obtained by using continuous-time core-level photon-stimulated desorption spectroscopy in the photon energy range of 98–110 eV show the variation of their shapes with photon exposure and depict the formation of surface SiF species. The dissociation of CCl2F2 molecules adsorbed on Si(111)-7 × 7, irradiated by monochromatic soft X-ray in the photon energy range of 98–110 eV, is mainly due to dissociative electron attachment and indirect dipolar dissociation induced by photoelectrons emitted from the silicon surface.  相似文献   

16.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded by high sensitivity CW-Cavity Ring Down Spectroscopy (CW-CRDS) between 6885.79 and 7405.91 cm?1. This strong absorbing region includes the first hexad of interacting vibrational bands which was previously studied by Fourier Transform Spectroscopy. The achieved sensitivity of the recordings varies from αmin~2×10–11 to 2×10?10 cm?1 allowing us to use a sample pressure of 0.1 Torr, making pressure broadening of the line profile mostly negligible. Weak lines in the vicinity of much stronger lines could then be accurately measured. The weakest lines have intensity on the order of 5×10–28 cm/molecule at 296 K. A set of 4471 lines were assigned to 4916 transitions of five water isotopologues (H2 16O, H2 18O, H2 17O, HD16O and HD18O). A small number of new energy levels was determined mostly for the H2 17O isotopologue. The previous investigations and existing databases are critically evaluated. In particular, a number of corrections and new assignments are proposed for the water list provided by the HITRAN database in the considered region. As a result, a complete list of 12,700 transitions for water in “natural” isotopic abundance is provided as Supplementary Material for the 6885–7408 cm?1 region.  相似文献   

17.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

18.
We report a sensitive photodetector, based on a manganite junction La2/3Ca1/3MnO3/Si, for femtosecond (fs) pulse laser energy per pulse and average power measurements. The La2/3Ca1/3MnO3/Si photodetector exhibits D? (normalized detectivity) greater than 5.229×109 cm Hz1/2 W?1. The open-circuit photovoltage and short-circuit photocurrent responsivities reach ~268 V/mJ and ~275 A/mJ for single pulse irradiation, respectively, and the open-circuit photovoltage responsivity reaches ~1.7 V/W for average power illumination. The experimental results make the manganite junction a promising fs laser measurement detector and reference standard for calibrating fs lasers.  相似文献   

19.
Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42 kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329 W/cm2) and exposure time (5, 15 and 20 min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA = 0.138 W/cm2 for 5 min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA = 0.329 W/cm2 for 20 min) ultrasound group. Ultrasound irradiation (0.138 W/cm2) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5 min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.  相似文献   

20.
Hydrogen atoms on solid surfaces were measured directly by elastic recoil detection analysis (ERDA) using medium energy (100–150 keV) Ne+ ions with an excellent sensitivity of (~ 1 × 1012 H/cm2) without any absorber foils and time-of-flight techniques. An electrostatic toroidal analyzer acquired H+ ions with energy around 11 keV recoiled from Si(111)-1 × 1-H surfaces. The H+ fraction strongly depends upon emerging angle and takes a value more than 50% at the angle below 70° and a saturated value of 17% at the angle above 80° with respect to surface normal. We detected H atoms on the reduced TiO2(110) exposed to water molecules at room temperature (2 L) and estimated the absolute amount of H to be ~ 2.0 × 1014 H/cm2 corresponding to ~ 38% (~ 0.38 ML) of the bridging oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号