首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are ‘single-humped’ and ‘double-humped’, respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | ?N/2(N+1) and thickens or thins according to |t | ?N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).  相似文献   

4.
Surface responses induced by point load or uniform traction moving steadily with subsonic speed on an anisotropic half-plane boundary are investigated. It is found that the effects of the material constant on surface displacements are through matrices L?1(v) and S(v)L?1(v), while those on surface stress components are through matrices Ω(v) and Γ(v). Explicit expressions for the elements of these four matrices are expressed in terms of elastic stiffness for general anisotropic materials. The special cases of monoclinic materials with symmetry plane at x1 = 0, x2 = 0 and x3 = 0, and the case for orthotropic materials are all deduced. Results for isotropic material may be recovered from present results. For monoclinic materials with a plane of symmetry at x3 = 0, two of the elements of matrix Ω(v) are found to be independent of subsonic speed.  相似文献   

5.
We study steady and pulsating displacement flows of a Bingham fluid by a Newtonian fluid, along a plane channel. For sufficiently large yield stress a static residual wall layer can result during the displacement. The flow is parameterised by the Reynolds number (Re), the Bingham number (B) and the viscosity ratio (M). Perhaps intuitively, thicker layers are found with larger M and at lower Re. The residual layer is formed on the advective timescale of the displacement but drains on a slower timescale governed by M. For larger M truly stationary layers are only found for large t when the layer has thinned sufficiently to become static. Increased Re results in increased energy production locally around the finger. For large enough Re the energy production can play a significant role in yielding the fluid. As the energy production rate increases it also becomes focused around the corner or shoulder region of the front, and spreads axially along the initial part of the residual layer. This causes fluid to yield increasingly far behind the front and allows for the layer to thin. As B increases the static layer tends to decrease (see also [1], [2]). At small Re the static layer thickness appears to be independent of M. At large Re the layer thickness is dependent on M and decreases asymptotically to a constant value as B  ∞.For pulsating displacement flow rates, Q(t) = 2(1 + Asin  ωt) : A  [0, 1) we study two ranges: ωRe ? 2π and ωRe ? 2π. For the viscous regime (ωRe ? 2π) a pseudo-steady 1D model predicts that the residual layer should remain static for 3(1 + Asin  ωt) < MB. In practice we find that partial mobilisation of the residual layer occurs even when this inequality is satisfied, but not if MB becomes significantly larger than 3(1 + A). For ωRe ? 2π we mobilise the layer for significantly larger values of MB and at smaller A, than in the viscous regime. This effect is traced to the occurrence of out-of-phase velocity fluctuations in the displacing fluid within a wall layer close to the interface.  相似文献   

6.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

7.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re = 100, 250 and 300, non-dimensional rotational rates Ω1 = 0–1 and rotation axis angles α = 0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx, CLy) and (CD, CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re = 300 and Ω1 = 0.05, the phase diagrams (CLx, CLy) show ‘saw tooth’ patterns for both α = 0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re  800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω1 increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.  相似文献   

8.
The engineering response of metamaterials has a dramatic impact on the physics, optics and engineering communities, because they offer electromagnetic properties that are difficult or impossible to achieve with conventional materials. In this paper, an asymptotic analysis of the electromagnetic fields at multi-material wedges composed of metamaterials is proposed. This is made possible by removing the assumption of positive electric permittivities and magnetic permeabilities, an hypothesis which usually applies to conventional materials. Exploring the whole range of variability of these electromagnetic properties, it is shown that, in addition to the classical real eigenvalues 0 ? λ < 1 leading to power-law singularities of the type O(rλ?1) as r  0, it is also possible to find imaginary eigenvalues leading to hypersingular solutions, as well as nonsingular configurations for a suitable choice of the negative electric permittivities and magnetic permeabilities of the media. Moreover, to fully characterize the asymptotic fields, the analysis is not only restricted to the determination of the lowest real and complex eigenvalues, but is also extended to the evaluation of the higher-order nonsingular ones. The obtained analytical results collected in synthetic diagrams are expected to have impact on the design of micro- and nano-electro-mechanical systems.  相似文献   

9.
The velocity field and the adequate shear stress corresponding to the flow of a generalized Burgers’ fluid model, between two infinite co-axial cylinders, are determined by means of Laplace and finite Hankel transforms. The motion is due to the inner cylinder that applies a time dependent torsional shear to the fluid. The solutions that have been obtained, presented in series form in terms of usual Bessel functions J1( ? ), J2( ? ), Y1( ? ) and Y2( ? ), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for Burgers’, Oldroyd-B, Maxwell, second grade, Newtonian fluids and large-time transient solutions for generalized Burgers’ fluid are also obtained as special cases of the present general solutions. The effect of various parameters on large-time and transient solutions of generalized Burgers’ fluid is also discussed. Furthermore, for small values of the material parameters, λ2 and λ4 or λ1, λ2, λ3 and λ4, the general solutions corresponding to generalized Burgers’ fluids are going to those for Oldroyd-B and Newtonian fluids, respectively. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

10.
Squeeze flow in the gap between non-parallel circular plates of radius R is discussed. The test material is assumed to be a power-law fluid, with a no-slip boundary condition at the plates. If the mean separation between the plates is h, and the angle of inclination between the plates is ? ? h/R, the force on the plates is perturbed only at O(?2) and is increased by less than 10% if ? < 0.35h/R. A torque O(?) tends to return the plates to a parallel configuration.  相似文献   

11.
12.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

13.
Potassium sodium niobate (KNN) powders were synthesized by a modified sol–gel method, using as starting chemicals potassium carbonate, sodium carbonate, and niobium hydroxide, and, as esterification and chelating agents, respectively, ethylene glycol (EG) and ethylene diamine tetraacetic acid (EDTA)/citrate. The effects of citric acid (CA), EG, and EDTA on the stability of the precursor sol were systemically investigated. The powders and gels were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC). The results indicated that a stable precursor sol was formed when n(CA):n(Mn+) = 3:1, n(EDTA):n(NH4OH) = 1:3.5, and n(CA):n(EG) = 1:2. The xerogel was calcined at 500–950 °C to prepare the KNN powder. Pure KNN perovskite phase with a cube-like structure was synthesized at 850 °C from the precursor sol for a K/Na molar ratio of 1.2. The formation mechanism of the KNN perovskite phase was also discussed.  相似文献   

14.
The goal of this work is a systematic presentation of some classes of mixed weak formulations, for general multi-dimensional dipolar gradient elasticity (fourth order) boundary value problems. The displacement field main variable is accompanied by the double stress tensor and the Cauchy stress tensor (case 1 or μ ? τ ? u formulation), the double stress tensor alone (case 2 or μ ? u formulation), the double stress, the Cauchy stress, the displacement second gradient and the standard strain field (case 3 or μ ? τ ? κ ? ε ? u formulation) and the displacement first gradient, along with the equilibrium stress (case 4 or u ? θ ? γ formulation). In all formulations, the respective essential conditions are built in the structure of the solution spaces. For cases 1, 2 and 4, one-dimensional analogues are presented for the purpose of numerical comparison. Moreover, the standard Galerkin formulation is depicted. It is noted that the standard Galerkin weak form demands C1-continuous conforming basis functions. On the other hand, up to first order derivatives appear in the bilinear forms of the current mixed formulations. Hence, standard C0-continuous conforming basis functions may be employed in the finite element approximations. The main purpose of this work is to provide a reference base for future numerical applications of this type of mixed methods. In all cases, the associated quadratic energy functionals are formed for the purpose of completeness.  相似文献   

15.
This paper investigates the degenerate scale problem for the Laplace equation and plane elasticity in a multiply connected region with an outer circular boundary. Inside the boundary, there are many voids with arbitrary configurations. The problem is analyzed with a relevant homogenous BIE (boundary integral equation). It is assumed that all the inner void boundary tractions are equal to zero, and tractions on the outer circular boundary are constant. Therefore, all the integrations in BIE are performed on the outer circular boundary only. By using the relation z * conjg(z) = a * a, or conjg(z) = a * a/z on the circular boundary with radius a, all integrals can be reduced to an integral for complex variable and they can be integrated in closed form. The degenerate scale a = 1 is found in the Laplace equation and in plane elasticity regardless of the void configuration.  相似文献   

16.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   

17.
The effect of material compressibility on the stress and strain fields for a mode-I crack propagating steadily in a power-law hardening material is investigated under plane strain conditions. The plastic deformation of materials is characterized by the J2 flow theory within the framework of isotropic hardening and infinitesimal displacement gradient. The asymptotic solutions developed by the present authors [Zhu, X.K., Hwang K.C., 2002. Dynamic crack-tip field for tensile cracks propagating in power-law hardening materials. International Journal of Fracture 115, 323–342] for incompressible hardening materials are extended in this work to the compressible hardening materials. The results show that all stresses, strains, and particle velocities in the asymptotic fields are fully continuous and bounded without elastic unloading near the dynamic crack tip. The stress field contains two free parameters σeq0 and s330 that cannot be determined in the asymptotic analysis, and can be determined from the full-field solutions. For the given values of σeq0 and s330, all field quantities around the crack tip are determined through numerical integration, and then the effects of the hardening exponent n, the Poisson ratio ν, and the crack growth speed M on the asymptotic fields are studied. The approximate behaviors of the proposed solutions are discussed in the limit of ν  0.5 or n  ∞.  相似文献   

18.
Uniform rhombohedral α-Fe2O3 nanoparticles, ~60 nm in size, were synthesized via a triphenylphosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 0 4) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10?3 emu/g and coercivity HC of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rhombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2–20 mM.  相似文献   

19.
This paper reports on the experimental examination of the deformation characteristics near a crack tip in a cyclically work-hardened copper single crystal using a 2D surface scans with nano-indentation. The experimental methodology enables the characterization of the primary deformation field near a crack tip via the modulation of the imposed secondary deformation field by a nano-indentation. In a heavily deformed 4-point bend specimen, the measurements showed an existence of an asymptotic field around the crack tip at a distance of R  2.5J/σ0. The measurements also showed the qualitative details of toughness evolution within the high-gradient deformation field around the crack tip. The nature of dislocation distribution (i.e. statistically distributed vs. distributions necessitated by geometry) around the crack tip is quantified. The measurements indicate the dominance of the geometrically necessary dislocation within the finite deformation zone ahead of the tip up to a distance of R  3J/σ0. Thereafter, it is confined in radial rays coinciding with the sector boundaries around the crack tip. These measurements elucidate the origin of the inhomogeneous hardening and the size dependent macroscopic response close to crack tip.  相似文献   

20.
A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to thrust-out force and three kinds of moments transmitted through branch pipes is presented in this paper. The solutions of modified Morley equation, which can be applicable up to ρ0 = d/D  0.8 and λ = d/(DT)1/2  8 and the order of accuracy is raised to O(T/D), for the four loading cases are given. The accurate continuity conditions of generalized forces and displacements at the intersecting curve of two cylindrical shells for the four loading cases and the condition of the uniqueness of displacements are derived in this paper. The presented results are verified by experimental and numerical results successfully. They are in agreement with WRC Bulletin 297 when d/D is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号